教你用Python压缩图片

质量、速度、廉价,选择其中两个

如果需要做图片识别那么必定需要大量的训练素材,我们通常使用爬虫来获取,python爬取bing图片python爬取百度图片,但是怕取下来的图片大小不一,再进行训练之前必须进行裁剪和压缩,今天就来讲一讲图片压缩,下面这个例子是我做一个项目时用到的

import PIL.Image as Image
import os

#图片压缩批处理
def compressImage(srcPath,dstPath):
    for filename in os.listdir(srcPath):
        #如果不存在目的目录则创建一个,保持层级结构
        if not os.path.exists(dstPath):
                os.makedirs(dstPath)

        #拼接完整的文件或文件夹路径
        srcFile=os.path.join(srcPath,filename)
        dstFile=os.path.join(dstPath,filename)

        # 如果是文件就处理
        if os.path.isfile(srcFile):
            try:
                #打开原图片缩小后保存,可以用if srcFile.endswith(".jpg")或者split,splitext等函数等针对特定文件压缩
                sImg=Image.open(srcFile)
                w,h=sImg.size
                dImg=sImg.resize((int(w/2),int(h/2)),Image.ANTIALIAS)  #设置压缩尺寸和选项,注意尺寸要用括号
                dImg.save(dstFile) #也可以用srcFile原路径保存,或者更改后缀保存,save这个函数后面可以加压缩编码选项JPEG之类的
                print (dstFile+" 成功!")
            except Exception:
                print(dstFile+"失败!!!!!!!!!!!!!!!!!!!!!!!!!!!!")

        # 如果是文件夹就递归
        if os.path.isdir(srcFile):
            compressImage(srcFile, dstFile)

if __name__=='__main__':
    compressImage("G:/兔屎图片_未处理","G:/兔屎图片_已处理")

可能这个方法不是很通用,因为我当时处理的图片都是很大的,一个图片大概在3M-5M这样,而我并不需要这么高分辨率,因为太高分辨率会影响我机器学习的效率,我就采用最粗暴的方法,使用PIL库中的Image类,调用resize方法把图片的宽高直接砍一半,但是这里我还是采用了Image.ANTIALIAS滤镜虽然这样会使我图片压缩的效率降低一大截,但也尽最大可能的保留了图片的信息。

但我后来又遇到一种更好的压缩图片的方法,使用tinify API进行压缩,通过它压缩的图片信息基本上没有损失,是个压缩图片利它的官方网站:https://tinypng.com/

在它官网上也可以直接进行压缩,不过只能小批量的操作,一次最多20张,下面是使用它进行图片压缩的脚本,你需要自己申请Key填写到程序中

import os
import os.path
import click
import tinify

tinify.key = "你申请的Key,放在这里."
targetFileDirName = "/compress" #输出目录
targetIsDir = False
totalPicCount = 1 #压缩图片总数
compressSuccessPicCount = 0 #图片压缩成功的数量

#这里就是通过tingPng压缩图片的核心代码
def compress_core(file, outputFile):
    source = tinify.from_file(file)  #压缩指定文件
    source.to_file(outputFile)       #将压缩后的文件输出当指定位置

def compress_file(file):
    if not os.path.isfile(file):
        print("你指定的不是文件,不给你压缩这个文件!")
        return
    srcFiledirName = os.path.dirname(file)
    basename = os.path.basename(file)  #获得文件全称 例如  migo.png
    filename, fileSuffix = os.path.splitext(basename)  #获得文件名称和后缀名  例如 migo 和 png
    if picIsCorrect(fileSuffix):
        targetFileDir = srcFiledirName + targetFileDirName
        if not os.path.isdir(targetFileDir):
            os.mkdir(targetFileDir)
        print("正在压缩的图片:  %s"%(srcFiledirName + "/" +basename))
        compress_core(file, targetFileDir + "/" + basename)
        global compressSuccessPicCount
        compressSuccessPicCount += 1
        global targetIsDir
        if targetIsDir is not True:
            print("------------压缩的图片在:  %s  目录下"%(targetFileDir))
    else:
        print("暂不支持压缩 {} 格式的文件, 文件名: {}".format(fileSuffix, basename))

def picIsCorrect(fileSuffix):
    if fileSuffix == ".png" or fileSuffix == ".jpg" or fileSuffix == ".jpeg":
        return True
    else:
        return False

def compress_dir(dir):
    if not os.path.isdir(dir):
        print("你输入的不是一个目录")
        return
    else:
        global targetIsDir
        targetIsDir = True
        srcFilePath = dir #源路径
        for root, dirs, files in os.walk(srcFilePath):
            global totalPicCount
            totalPicCount = len(files)
            for name in files:
                compress_file(srcFilePath + "/" + name)
            break #仅遍历当前目录
    print("------------所有压缩的图片都在: %s  目录下" %(srcFilePath + targetFileDirName))

@click.command()
@click.option('-f', "--file",  type=str,  default=None,  help="单个文件压缩")
@click.option('-d', "--dir",   type=str,  default=None,  help="被压缩的文件夹")
def run(file, dir):
    if not file is None:
        compress_file(file)         #压缩指定的文件
        pass
    elif not dir is None:
        compress_dir(dir)           #压缩指定的目录
        pass
    else:
        compress_dir(os.getcwd())   #压缩当前文件夹
        print("当前目录: %s"%(os.getcwd()))
    print("------压缩结束!------图片总数 ({}),  压缩的图片数量 ({})".format(totalPicCount, compressSuccessPicCount))

if __name__ == "__main__":
    run()

 

发布了113 篇原创文章 · 获赞 190 · 访问量 15万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览