(二十九):Image-text Multimodal Emotion Classification via Multi-view Attentional Network

本文提出了一种名为多视图注意网络(MVAN)的新型模型,用于图文多模态情感分类。MVAN通过特征映射、交互学习和特征融合三个阶段,利用记忆网络深入探索图像-文本之间的交互,考虑了不同视角的图像特征。通过在大规模数据集TumEmo以及公开的MVSA数据集上的实验,MVAN在多模态情感分析任务上表现出优于现有基线模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 出处:IEEE 2020
  • 标题:基于多视角注意网络的图文多模态情感分类

Abstract

与单模态内容相比,多模态数据更能生动有趣地表达用户的感受和情感。因此,多模态情感分析成为一个热门的研究课题
然而,现有的方法要么是:独立学习情感模态特征,而没有考虑它们之间的相关性,要么是:简单地整合多模态特征。
此外,大多数公开的多模态数据集是通过情感极性来标记的,而用户表达的情感是特定的。

基于这一观察结果,在本文中,我们构建了一个名为TumEmo的大规模图像-文本情感数据集(即,用不同的情绪标记),该数据集包含Tumblr(Tumblr是一个由大卫·卡普在2007年创立的微博和社交网站,目前归Automattic所有。该服务允许用户发布多媒体内容和其他内容到简短的博客。用户可以关注其他用户的博客。)的超过19万个实例。进一步提出了一种基于多视图注意网络(MVAN)的多模态情感分析模型,该模型利用不断更新的记忆网络来获取图像-文本的深度语义特征
该模型包括特征映射、交互学习和特征融合三个阶段:
· 在特征映射阶段,我们利用物体视角和场景

### STiL 方法概述 Semi-supervised Tabular-Image Learning (STiL) 是一种用于处理多模态数据的半监督学习方法[^1]。该方法旨在通过结合表格数据和图像数据来提升模型性能,特别是在标注数据有限的情况下。STiL 的核心目标是从不同模态的数据中提取任务相关信息并加以融合。 #### 多模态分类中的任务相关信息探索 在多模态分类场景下,任务相关信息通常分布在不同的数据源之间。STiL 方法通过设计特定机制,在训练过程中逐步识别哪些特征对于当前任务最为重要[^2]。具体而言: - **跨模态关联建模**:STiL 利用注意力机制捕获表格数据与图像数据之间的潜在关系。这种机制能够动态调整各模态的重要性权重,从而聚焦于最相关的部分[^3]。 - **自监督信号增强**:为了充分利用未标记样本的信息,STiL 引入了自监督学习策略。这些策略可以通过预测旋转角度、对比学习等方式生成额外的学习信号,进一步优化模型参数[^4]。 - **联合表示空间构建**:通过对齐两种模态的嵌入向量,STiL 创建了一个统一的任务相关表示空间。这使得即使某些模态缺失或质量较差时,模型仍能保持较高的鲁棒性和准确性[^5]。 以下是实现上述功能的一个简化代码框架: ```python import torch.nn as nn class STILModel(nn.Module): def __init__(self, tabular_dim, image_channels): super(STILModel, self).__init__() # 图像编码器初始化 self.image_encoder = ImageEncoder(image_channels) # 表格数据编码器初始化 self.tabular_encoder = TabularEncoder(tabular_dim) # 跨模态注意层 self.cross_modal_attention = CrossModalAttention() # 输出层定义 self.classifier = Classifier() def forward(self, table_data, image_data): img_features = self.image_encoder(image_data) tab_features = self.tabular_encoder(table_data) combined_features = self.cross_modal_attention(img_features, tab_features) output = self.classifier(combined_features) return output ``` 此代码展示了如何分别对图像和表格数据进行编码,并利用 `CrossModalAttention` 层完成两者间的交互操作[^6]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laura_Wangzx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值