[论文笔记] [2015] Deep Convolutional Networks on Graph-Structured Data

本文介绍了一篇2015年的论文,探讨如何将深度卷积网络扩展到图结构数据上。论文解决了大规模数据上的图卷积问题,并提出了无监督和监督的图估计方法来构建图结构。实验部分展示了在分子活性预测任务中,利用图卷积网络相对于全连接层的优势。此外,文章还对比了其他构建图结构的方法,如可学习的Self-adaptive邻接矩阵。

这是15年的一篇论文,是Joan Bruna等人对13年的工作 Spectral Network [1] 做出的改进,主要解决两个了问题:

  1. spectral network 拓展到大规模数据(large-scale, high-dimensional)任务上
  2. 对于没有给定图结构的任务,提出了一种 graph estimation 方法

Generalizing Convolutions to Graphs

这一篇在spetral network的定义上,描述地更加简洁明了。

Definition 1. Let WWW be a N×NN \times NN×N similarity matrix representing an undirected graph GGG, and let L=I−D−1/2WD−1/2L = I - D^{-1/2}WD^{-1/2}L=ID1/2WD1/2 be its graph Laplacian with D=W⋅1D = W \cdot 1D=W1 eigevectors U=(u1,...,uN)U = (u_1,...,u_N)U=(u1,...,uN). Then a graph convolution of input signals xx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值