这是15年的一篇论文,是Joan Bruna等人对13年的工作 Spectral Network [1] 做出的改进,主要解决两个了问题:
- spectral network 拓展到大规模数据(large-scale, high-dimensional)任务上
- 对于没有给定图结构的任务,提出了一种 graph estimation 方法
Generalizing Convolutions to Graphs
这一篇在spetral network的定义上,描述地更加简洁明了。
Definition 1. Let WWW be a N×NN \times NN×N similarity matrix representing an undirected graph GGG, and let L=I−D−1/2WD−1/2L = I - D^{-1/2}WD^{-1/2}L=I−D−1/2WD−1/2 be its graph Laplacian with D=W⋅1D = W \cdot 1D=W⋅1 eigevectors U=(u1,...,uN)U = (u_1,...,u_N)U=(u1,...,uN). Then a graph convolution of input signals xx

本文介绍了一篇2015年的论文,探讨如何将深度卷积网络扩展到图结构数据上。论文解决了大规模数据上的图卷积问题,并提出了无监督和监督的图估计方法来构建图结构。实验部分展示了在分子活性预测任务中,利用图卷积网络相对于全连接层的优势。此外,文章还对比了其他构建图结构的方法,如可学习的Self-adaptive邻接矩阵。
最低0.47元/天 解锁文章
4351

被折叠的 条评论
为什么被折叠?



