[论文笔记] [2013] [NIPS] Distributed Representations of Words and Phrases and their Compositionality

这篇论文的作者 Mikolov 基于他前面的工作——skip-gram model学习 word embedding,提出了几个提高词向量性能和训练速度的技巧,以及如何学习短语的表示。

这篇论文的主要贡献为:

  1. 利用 subsampling 加速训练和提高词向量的质量;
  2. 对 Noise Contrastive Estimation(NCE)做了一些简化,提出了 Negative sampling 来优化模型训练速度;
  3. 尝试学习短语的表示。

The Skip-gram Model

Mikolov 之前的工作 skip-gram [1] 简单看来,就是给定一个中心词去预测周围词,训练的过程就是学习词向量的过程。模型的目标函数是:
1 T ∑ t = 1 T ∑ − c ≤ j ≤ c , j ≠ 0 log ⁡ p ( w t + j ∣ w t ) \frac{1}{T} \sum_{t=1}^T{\sum_{-c \leq j \leq c, j \neq 0}{\log{p(w_{t+j}|w_t)}}} T1t=1Tcjc,j=0logp(wt+jwt)
其中 c c c 为上下文词的范围。c 越大,需要的训练样本更大,训练的时间更久,但模型的效果会更好。 p ( w t + j ∣ w t ) p(w_{t+j}|w_t) p(wt+jwt) 的计算则是通过 softmax函数做概率的归一化:
p ( w O ∣ w I ) = exp ⁡ ( v w O ′ T v w I ) ∑ w = 1 W exp ⁡ ( v w ′ T v w I ) p(w_O|w_I) = \frac{\exp(v_{w_O}'^Tv_{w_{I}})}{\sum_{w=1}^W\exp(v_w'^Tv_{w_I})} p(wOwI)=w=1Wexp(vwTvwI)exp(vwOTvwI)
其中, v w v_w vw v w ′ v_w' vw 分别为单词 w w w的中心词词向量和周围词词向量(论文中称 “input” and “output” vector representations), W W W 为词表的大小。采用 softmax 函数,在 inference的时候需要计算词表中每个词的概率,在一些W非常大的任务下,无疑计算量是很大的。另外,将上式预测一个词 w O w_O wO的概率,代入到 cross-entropy loss中,可得(这里只是简化下,只计算一个词的loss)
J θ = − log ⁡ exp ⁡ ( v w O ′ T v w I ) ∑ w = 1 W exp ⁡ ( v w ′ T v w I ) J_{\theta} = - \log{ \frac{\exp(v_{w_O}'^Tv_{w_{I}})}{\sum_{w=1}^W\exp(v_w'^Tv_{w_I})}} Jθ=logw=1Wexp(vwTvwI)exp(vwOTvwI)
通过化简,可以得到:
J θ = − v w O ′ T v w I + log ⁡ ∑ w = 1 W exp ⁡ ( v w ′ T v w I ) J_{\theta} = -v_{w_O}'^Tv_{w_I} + \log{\sum_{w=1}^W\exp(v_w'^Tv_{w_I})} Jθ=vwOTvwI<

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值