[论文笔记] [2014] Deeply-Supervised Nets

本文详细介绍了深度学习领域的Deeply-Supervised Nets,探讨了其动机和模型设计。通过在每个隐藏层引入companion objective,即附加分类器,以评估和优化每一层的特征提取。论文提出的目标函数结合了最后一层和各隐藏层分类器的损失,缓解了梯度消失问题,并在实验中展示了模型的泛化能力和收敛速度。
摘要由CSDN通过智能技术生成

这篇论文是比较早的工作了,但论文中提到 Deep Supervision 的概念在后面的工作中常会被提到。这篇论文的亮点就在于对每一隐层都引入 companion objective。简单说来就是每一个隐层都会后接一个分类器,去检验(监督)每一个隐层抽取出的特征的效果,这也是为什么标题叫 deeply-supervised。

如果先不看论文后面的部分,只看这么一个 idea,就会有一些疑问:

  • 每个隐层都接一个分类器,整个模型怎么训练?目标函数怎么定义?反向传播怎么做?
  • 对每个隐层的分类器做优化,不会影响模型最后分类器的效果吗?

这几个问题也是作者论文主体部分要去阐述和讨论的。

Deeply-Supervised Nets

作者一开始总结了当时 DL 存在的一些问题,当然这些问题目前依旧还是存在的,比如中间层在训练时的不透明、训练时出现梯度爆炸/消失的问题、缺乏数学理论的理解、模型训练依赖于大量的数据、需要人工调参等。而作者的工作一定程度的缓解或解决了上述的一些问题。

Motivation

对于这么一个新奇的结构,作者的动机是什么?通常,我们在做数据挖掘时,有一个很关键的步骤就是特征工程,因为特征决定了模型效果的上限。使用 highly discriminative 的特征去训练一个模型,其效果会优于使用了 less discriminative 的特征。基于这个观察(特征好,模型就好),在DL模型中,我们自然希望模型的隐层能提取出好的特征。

于是就有一个问题,如何促使隐层提取出好的特征,又如何去评估隐层提取出的特征的好坏。一个很简单的思路,“是驴是马,拉出来溜溜不就知道了嘛”,给每个隐层抽取的特征后面接一个分类器看看效果,不就知道提取出来的特征是好是坏了嘛。基于这么一个想法,作者就提出了给每一个隐层后面接上一个分类器,通过这个分类器的效果来评估隐层提取出的特征的质量,利用这个反馈来优化隐层,进而使得整体模型的效果得到提升。

Formulation

这个想法不要太香。那么就看看前面提到的一个疑问,模型的目标函数怎么定义,怎么做反向传播训练。首先是常规的每一层卷积操作的定义:
Z ( m ) = f ( Q ( m ) ) , a n d Z ( 0 ) = X ,   Q ( m ) = W ( m ) ∗ Z ( m − 1 ) Z^{(m)} = f(Q^{(m)}), \quad and \quad Z^{(0)} = X, \\ \ \\ Q^{(m)} = W^{(m)} * Z^{(m-1)} Z(m)=f(Q(m)),andZ(0)=X, Q(m)=W(m)Z(m1)
其中 M M M 表示模型总的层数: W ( m ) , m = 1... M W^{(m)},m=1...M W(m),m=1...M 为每一层需要学习的参数权重; Z ( m − 1 ) Z^{(m - 1)} Z(m1) m − 1 m - 1 m1 层产生的 feature map; Q ( m ) Q^{(m)} Q(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值