神经网络之多维卷积的那些事(一维、二维、三维)

前言

一般来说,一维卷积用于文本数据,二维卷积用于图像数据,对宽度和高度都进行卷积,三维卷积用于视频及3D图像处理领域(检测动作及人物行为),对立方体的三个面进行卷积 。二维卷积的用处范围最广,在计算机视觉中广泛应用。

一维卷积Conv1d

一维卷积最简单,实质是对一个词向量做卷积,如下所示:
img

  • 图中的输入的数据维度为8,过滤器的维度为5。卷积后输出的数据维度为8−5+1=4
  • 如果过滤器数量仍为1,输入数据的channel数量变为16,则输入数据维度为8×16
  • 一维卷积常用于序列模型,自然语言处理领域。

Pytorch中nn.Conv1d卷积运算要求输入源是3维,输入源的三个维度分别是:第一个维度代表每个序列的个数即样本数,第二个维度代表每一个序列的通道数,第三个维度代表这个词向量序列,如下所示:

import torch
import torch.nn as nn
# 输入源:1个样本,16个通道,8个数据
a = torch.randn(1,16,8)
# 卷积:输入通道为16,输出通道为1,卷积核大小 5*5
conv = nn.Conv1d(16, 1, 5)
c = conv(a)
print('a:', a.size())
print('c:', c.size())

output

a: torch.Size([1, 16, 8])
c: torch.Size([1, 1, 4])

二维卷积Conv2d

二维卷积是最常见、用途最广泛的卷积。先假定卷积核(过滤器)数量为1,图片通道数为1,卷积操作如下:
img

  • 图中的输入的数据维度为14×14,卷积核数量为1,图片通道数为1
  • 二维卷积输出的数据尺寸为8−5+1=4,即4×4

这是最简单的二维卷积的场景,现在重点来了,假定图片通道数为3,卷积核的数量为1,则卷积操作如下:
在这里插入图片描述

  • 如上图所示,输入源是6*6*3(图片大小6*6,三个通道),卷积核大小3*3,filters(卷积核数量)=1,即权重矩阵是3*3*3*1,得到的结果4*4*1(图片大小4*4,一个通道)
  • 其实就是三个3*3的卷积核分别对图片的三个通道做卷积,然后把结果相加得到一个4*4的图片。所以,这里卷积核w的参数个数是(3*3*3+1)*1,(输入通道3,卷积核大小3*3,一个偏置,输出通道1)
  • 上图卷积 Pytorch中表示为:nn.Conv2d(3,1,kernel_size=(3,3),stride=1)

到这里可能有人会问,卷积核大小为3*3,为什么变成3*3*3了?
可以细想一下,图片的大小是6*6*3(图片大小6*6,三个通道),也就是三维的图片,二维的卷积是肯定不能对其操作的,所以卷积核的维度会随着图片的输入通道改变,如果图片的输入通道是3,那么卷积核的维度也是3,如果图片的输入通道是1,那么卷积核的维度也是1,这也就是为什么Pytorch中nn.Conv2d的输入通道要与图片的输入通道保持一致的原因,否则无法进行卷积操作。

现在,假定图片通道数为3,卷积核的数量为2,则卷积操作如下

在这里插入图片描述

  • 如上图所示,输入源是6*6*3(图片大小6*6,三个通道),卷积核大小3*3,filters=2,即权重矩阵是3*3*3*2,得到的结果4*4*2
  • 上图每一个卷积核卷积参数的个数是(3*3*3+1)*2
  • 上图卷积 Pytorch中表示为:nn.Conv2d(3,2,kernel_size=(3,3),stride=2)

计算图如下所示:

在这里插入图片描述

二维卷积常用于计算机视觉、图像处理领域。

Pytorch中nn.Conv2d卷积运算要求输入源是4维,输入源的四个维度分别是:第一个维度代表图片的个数即样本数,第二个维度代表每一张图片的通道数,后面二个维度代表图片的像素矩阵,如下所示:

import torch
import torch.nn as nn
a = torch.Tensor([[[[1,2,3,4],
                [5,6,7,8],
                [9,10,11,12],
                [13,14,15,16]]],
               [[[1,2,3,4],
                [5,6,7,8],
                [9,10,11,12],
                [13,14,15,16]]]])
print('a:',a.size())
# 卷积核:输入通道为1,输出通道6,卷积核大小2*2
conv = nn.Conv2d(1,6,2)
c = conv(a)
print('c:',c.size())

conv1 = nn.Conv2d(6,16,2)
c1 = conv1(c)
print('c1:',c1.size())

output

a: torch.Size([2, 1, 4, 4])
c: torch.Size([2, 6, 3, 3])
c1: torch.Size([2, 16, 2, 2])

三维卷积Conv3d

img

三维卷积具体思想与一维卷积、二维卷积相同,假设卷积核大小为f1*f2*f3(类似于二维卷积,三维卷积实际计算的时候卷积核是四维的,另一个维度由输入源的通道数决定)

  • 假设输入数据的大小为a1×a2×a3
  • 基于上述情况,三维卷积最终的输出为(a1−f1+1)×(a2−f2+1)×(a3−f3+1)
  • 三维卷积常用于医学领域(CT影响),视频处理领域(检测动作及人物行为)。

Pytorch中nn.Conv3d要求输入源是5维的,输入源的5个维度分别表示为:第一个维度代表样本的个数,第二个维度代表每个样本的通道数,后面三个维度代表三维立体图形的像素矩阵,如下所示:

import torch
import torch.nn as nn
x = torch.randn(1,2,6,1,1)
conv = nn.Conv3d(in_channels=2,
                 out_channels=6,
                 kernel_size=(2,1,1))
c = conv(x)
print('x:', x.size())
print('c:', c.size())

output

x: torch.Size([1, 2, 6, 1, 1])
c: torch.Size([1, 6, 5, 1, 1])

说明:通道数从输入的2转化为6,一个立体像素矩阵,输入前大小为6*1*1, 卷积核2*1*1,得到结果为(6-2+1)*(1-1+1)*(1-1+1)=5*1*1

卷积中的特征图大小计算方式

在神经网络卷积操作主要是提取特征的,因此卷积的输出称为特征图(FeatureMap),神经网络中有多层卷积,所以除了最开始输入的原始图像外,我们认为卷积输入的也是特征图

当卷积操作步长为1的时候,进行卷积操作后特征图的尺寸比较容易计算,如果步长为2或者更大就不容易计算了。其实这里有一个通用的公式,如下所示:
W o u t = W i n + 2 ∗ p a d d i n g − K s t r i d e + 1 W_{out} = \frac{ W_{in}+2*padding-K}{stride} + 1 Wout=strideWin+2paddingK+1
其中, W o u t W_{out} Wout为输出特征图的大小, W i n W_{in} Win为输入特征图的大小,K为卷积核大小,stride为卷积步长,padding为特征图填充的圈数。

这里不得不提一下,池化操作对上述公式也适用,我看有的文章里说,卷积除不尽的结果都向下取整,池化除不尽的结果都向上取整,这个说法是错误,我经过测试得出Pytorch和TensorFlow默认都是向下取整。如下所示:

卷积操作向下取整

# 卷积操作向下取整
import torch
import torch.nn as nn
a = torch.rand(1,1,10,10)
# (10+2*2-5)/2.0+1 = 5.5
conv2d = nn.Conv2d(in_channels=1,out_channels=1,kernel_size=(5,5),padding=2,stride=2)
output = conv2d(a)
output.size()
# 输出为:torch.Size([1, 1, 5, 5])

池化默认也是向下取整

# 池化默认也是向下取整
import torch
import torch.nn as nn
a = torch.rand(1,1,10,10)
# (10+2*2-5)/2.0+1 = 5.5
maxpool = nn.MaxPool2d(kernel_size=(5,5),stride=2,padding=2)
output = maxpool(a)
output.size()
# 输出为:torch.Size([1, 1, 5, 5])

但是,Pytorch中池化层有个参数ceil_node=True是向上取整的,它默认是False,TensorFlow里面没找到类似的参数

# 池化层ceil_mode=True向上取整
import torch
import torch.nn as nn
a = torch.rand(1,1,10,10)
# (10+2*2-5)/2.0+1 = 5.5
maxpool = nn.MaxPool2d(kernel_size=(5,5),stride=2,padding=2,ceil_mode=True)
output = maxpool(a)
output.size()
# 输出为:torch.Size([1, 1, 6, 6])

总结

到这里我们学到了

  • 不同卷积的应用
  • 多维卷积的原理
  • 多维卷积核参数的个数
  • 卷积中的特征图计算方式

是不是感觉收获满满!!!

  • 61
    点赞
  • 262
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雷恩Layne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值