深入理解model.eval()与torch.no_grad()

本文探讨了在PyTorch中model.eval()和torch.no_grad()的区别及其作用。model.eval()切换模型到测试模式,使dropout层保持全部激活,batchnorm层使用预计算的均值和方差。torch.no_grad()则用于关闭梯度计算,以节省计算资源。在验证模式下,dropout层全通过是为了保持训练时的神经元选择,而不会影响预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们用pytorch搭建神经网络经常见到model.eval()与torch.no_grad(),它们有什么区别?是怎么工作的呢?现在就让我们来探究其中的奥秘

model.eval()

  • 使用model.eval()切换到测试模式,不会更新模型的k,b参数
  • 通知dropout层和batchnorm层在train和val中间进行切换
    在train模式,dropout层会按照设定的参数p设置保留激活单元的概率(保留概率=p,比如keep_prob=0.8),batchnorm层会继续计算数据的mean和var并进行更新
    在val模式下,dropout层会让所有的激活单元都通过,而batchnorm层会停止计算和更新mean和var,直接使用在训练阶段已经学出的mean和var值
  • model.eval()不会影响各层的gradient计算行为,即gradient计算和存储与training模式一样,只是不进行反向传播(backprobagation)

torch.no_grad()

使用方法:

with torch.no_grad()
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雷恩Layne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值