拉格朗日反演

拉格朗日反演

若两个多项式 F ( x ) , G ( x ) F(x),G(x) F(x),G(x) 满足常数项为 0 0 0 且一次项不会为 0 0 0 ,且 G ( F ( x ) ) = x G(F(x))=x G(F(x))=x ,则称 F ( x ) , G ( x ) F(x),G(x) F(x),G(x) 为复合逆,同样 F ( G ( x ) ) = x F(G(x))=x F(G(x))=x,在模 x n x^n xn 也成立,但是需要群论的知识证明有:

[ x n ] F ( x ) = 1 n [ x − 1 ] 1 G n ( x ) [x^n]F(x)=\frac{1}{n}[x^{-1}]\frac{1}{G^n(x)} [xn]F(x)=n1[x1]Gn(x)1

此时 G ( x ) x \frac{G(x)}{x} xG(x) 为整式,所以又可写为:

[ x n ] F ( x ) = 1 n [ x n − 1 ] ( x G ( x ) ) n [x^n]F(x)=\frac{1}{n}[x^{n-1}](\frac{x}{G(x)})^n [xn]F(x)=n1[xn1](G(x)x)n
有拓展形式当 F ( G ( x ) ) = H ( x ) F(G(x))=H(x) F(G(x))=H(x) 时候,有:
[ x n ] F ( x ) = 1 n [ x n − 1 ] H ′ ( x ) ( x G ( x ) ) n [x^n]F(x)=\frac{1}{n}[x^{n-1}]H'(x)(\frac{x}{G(x)})^n [xn]F(x)=n1[xn1]H(x)(G(x)x)n

假证明

首先我们声明常数项为 0 0 0 不可逆,我们可以将多项式的指数拓展到负数,只是作为一种记号比如 A ( x ) B ( x ) \frac{A(x)}{B(x)} B(x)A(x) ,当 B ( x ) B(x) B(x) 没有常数项的时候,我们尝试将 B ( x ) B(x) B(x) 表示为 x d ⋅ C ( x ) x^d\cdot C(x) xdC(x) 那么就有 A ( x ) C ( x ) x − d \frac{A(x)}{C(x)}x^{-d} C(x)A(x)xd ,我们相当于只是拓展了项数并没有改变多项式求逆这一本质
推导对 G ( F ( x ) ) = x G(F(x))=x G(F(x))=x 可以表示为:

∑ i = 1 ∞ a i F i ( x ) = x \sum_{i=1}^{\infin}a_iF^i(x)=x i=1aiFi(x)=x

求导可得:

∑ i = 1 ∞ i a i F i − 1 ( x ) F ′ ( x ) = 1 \sum_{i=1}^{\infin}ia_iF^{i-1}(x)F'(x)=1 i=1iaiFi1(x)F(x)=1

除以 F n ( x ) F^n(x) Fn(x)
∑ i = 1 ∞ i a i F i − n − 1 ( x ) F ′ ( x ) = 1 F n ( x ) \sum_{i=1}^{\infin}ia_iF^{i-n-1}(x)F'(x)=\frac{1}{F^n(x)} i=1iaiFin1(x)F(x)=Fn(x)1
并取 [ x − 1 ] [x^{-1}] [x1] 的系数

[ x − 1 ] ∑ i = 1 ∞ i a i F i − n − 1 ( x ) F ′ ( x ) = [ x − 1 ] 1 F n ( x ) [x^{-1}]\sum_{i=1}^{\infin}ia_iF^{i-n-1}(x)F'(x)=[x^{-1}]\frac{1}{F^n(x)} [x1]i=1iaiFin1(x)F(x)=[x1]Fn(x)1

i ≠ n i\not=n i=n 时候有 F i − n − 1 ( x ) F ′ ( x ) = 1 i − n ( F i − n ) ′ ( x ) F^{i-n-1}(x)F'(x)=\frac{1}{i-n}(F^{i-n})'(x) Fin1(x)F(x)=in1(Fin)(x)
然后因为常数求导后 ( x 0 ) ′ = 0 ⋅ x − 1 = 0 (x^0)'=0\cdot x^{-1}=0 (x0)=0x1=0 所以这些项其实都是 0 0 0
于是
[ x − 1 ] n a n F − 1 ( x ) F ′ ( x ) = [ x − 1 ] 1 F n ( x ) [x^{-1}]na_nF^{-1}(x)F'(x)=[x^{-1}]\frac{1}{F^n(x)} [x1]nanF1(x)F(x)=[x1]Fn(x)1

i = n i=n i=n 时候 :
F − 1 ( x ) F ′ ( x ) = a 1 + 2 a 2 x + 3 a 3 x 2 + . . . a 1 x + a 2 x 2 + a 3 x 3 + . . . F^{-1}(x)F'(x)=\frac{a_1+2a_2x+3a_3x^2+...}{a_1x+a_2x^2+a_3x^3+...} F1(x)F(x)=a1x+a2x2+a3x3+...a1+2a2x+3a3x2+...
我们用刚刚说的那种方式来化简:
F − 1 ( x ) F ′ ( x ) = a 1 + 2 a 2 x + 3 a 3 x 2 + . . . a 1 x ⋅ 1 1 + a 2 a 1 x + a 3 a 1 x 2 + . . . F^{-1}(x)F'(x)=\frac{a_1+2a_2x+3a_3x^2+...}{a_1x}\cdot\frac{1}{1+\frac{a_2}{a_1}x+\frac{a_3}{a_1}x^2+...} F1(x)F(x)=a1xa1+2a2x+3a3x2+...1+a1a2x+a1a3x2+...1

注意我们只求 [ x − 1 ] [x^{-1}] [x1] 的系数
可以写成:
F − 1 ( x ) F ′ ( x ) = ( x − 1 + 2 a 2 a 1 + 3 a 3 a 1 x + . . . ) ⋅ 1 1 + a 2 a 1 x + a 3 a 1 x 2 + . . . F^{-1}(x)F'(x)=(x^{-1}+2\frac{a_2}{a_1}+3\frac{a_3}{a_1}x+...)\cdot\frac{1}{1+\frac{a_2}{a_1}x+\frac{a_3}{a_1}x^2+...} F1(x)F(x)=(x1+2a1a2+3a1a3x+...)1+a1a2x+a1a3x2+...1
然后发现后面的式子逆常数项为 1 1 1 ,前面只有一个 x − 1 x^{-1} x1
于是就有
[ x − 1 ] F − 1 ( x ) F ′ ( x ) = 1 [x^{-1}]F^{-1}(x)F'(x)=1 [x1]F1(x)F(x)=1
代入移项可得:
a n = 1 n [ x − 1 ] 1 F n ( x ) a_n=\frac{1}{n}[x^{-1}]\frac{1}{F^n(x)} an=n1[x1]Fn(x)1
则有
[ x n ] G ( x ) = 1 n [ x − 1 ] 1 F n ( x ) [x^n]G(x)=\frac{1}{n}[x^{-1}]\frac{1}{F^n(x)} [xn]G(x)=n1[x1]Fn(x)1
同样也有
[ x n ] F ( x ) = 1 n [ x − 1 ] 1 G n ( x ) [x^n]F(x)=\frac{1}{n}[x^{-1}]\frac{1}{G^n(x)} [xn]F(x)=n1[x1]Gn(x)1
此时 G ( x ) x \frac{G(x)}{x} xG(x) 为整式,所以又可写为:

[ x n ] F ( x ) = 1 n [ x n − 1 ] ( x G ( x ) ) n [x^n]F(x)=\frac{1}{n}[x^{n-1}](\frac{x}{G(x)})^n [xn]F(x)=n1[xn1](G(x)x)n

拓展形式就是在第一步那里完了后套进去就可以了…懒得写了
运用就是做题时候你求出 G ( F ( x ) ) = x G(F(x))=x G(F(x))=x 之类的你可以快速以 O ( n l o g n ) O(nlogn) O(nlogn) 的时间求第 n n n 项的值

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值