[BZOJ3684][拉格朗日反演+多项式求幂]大朋友和多叉树

题面

Description

我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树。对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的:点权为 1 1 的结点是叶子结点;对于任一点权大于1的结点 u u u的孩子数目 degu d e g u 属于集合 D D ,且u的点权等于这些孩子结点的点权之和。

给出一个整数 s s ,你能求出根节点权值为s的神犇多叉树的个数吗?请参照样例以更好的理解什么样的两棵多叉树会被视为不同的。

我们只需要知道答案关于 950009857 950009857 453×221+1 453 × 2 21 + 1 ,一个质数)取模后的值。

Input

第一行有 2 2 个整数s,m

第二行有 m m 个互异的整数,d1,d2,,dm,为集合 D D 中的元素。

Output

输出一行仅一个整数,表示答案模950009857的值。

Sample Input

4 2
2 3

Sample Output

10

HINT


1ms105,2dis 1 ≤ m ≤ s ≤ 10 5 , 2 ≤ d i ≤ s ,有 3 3 组小数据和3组大数据。

分析

首先,我们设 vi v i 为集合 D D 中是否有i这个元素,有则为 1 1 ,无则为0

vi=k=1m[dk=i] v i = ∑ k = 1 m [ d k = i ]

我们令 V(x) V ( x ) vi v i 的生成函数:

V(x)=k=0vixk V ( x ) = ∑ k = 0 ∞ v i x k

我们再设 fi f i 为根节点权值为 i i 的神犇多叉树的数量。

首先,显然有f0=0;而当 i=1 i = 1 即叶子节点时,有 f1=1 f 1 = 1

而在 i>1 i > 1 时,我们枚举根节点的儿子节点数量,在枚举各个叶子节点的权值,根据乘法原理得到递归式:

fi=k=0i1vks1+s2++sk=ij=1kfj f i = ∑ k = 0 i − 1 v k ∑ s 1 + s 2 + ⋯ + s k = i ∏ j = 1 k f j

我们发现后面这个是一个 k k 重卷积。那么我们令F(x) fi f i 的生成函数:

F(x)=k=0fkxk F ( x ) = ∑ k = 0 ∞ f k x k

那么我们根据递归式再加上特殊情况时的值,可以得到:

F(x)=k=0vkF(x)k+x F ( x ) = ∑ k = 0 ∞ v k F ( x ) k + x

那么我们发现这就是 V(x) V ( x ) 的形式。那么我们就得到:

F(x)=V(F(x))+x F ( x ) = V ( F ( x ) ) + x

F(x)V(F(x))=x F ( x ) − V ( F ( x ) ) = x

只要我们令 G(x)=xV(x) G ( x ) = x − V ( x ) ,就可以构造出一个拉格朗日反演的形式:

G(F(x))=x G ( F ( x ) ) = x

那么我们作反演就得到:

[xn]F(x)=1n[xn1](xG(x))n [ x n ] F ( x ) = 1 n [ x n − 1 ] ( x G ( x ) ) n

即:

fs=1s[xs1](xG(x))s f s = 1 s [ x s − 1 ] ( x G ( x ) ) s

注意到我们可以 x x G(x)约掉一个 x x ,则我们令:

H(x)=k=0vk+1xk=C(x)x

则有:

fs=1s[xs1](11H(x))n f s = 1 s [ x s − 1 ] ( 1 1 − H ( x ) ) n

我们直接多项式求逆+多项式求幂就可以解决了。

关于拉格朗日反演、多项式的操作,详见我的这篇博客:https://blog.csdn.net/ez_tjy/article/details/80213166

代码

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;
const ll p=950009857,g=7;
int n,nn,s,m,r[262145];
ll inv[262145],c[262145],gn[2][262145],ans;
inline ll pow(ll a,int b){
    ll ans=1;
    while(b){
        if(b&1)ans=ans*a%p;
        a=a*a%p;
        b>>=1;
    }
    return ans;
}
inline ll add(ll a,ll b){return a+b>p?a+b-p:a+b;}
inline ll cut(ll a,ll b){return a-b<0?a-b+p:a-b;}
void init(){
    for(n=1;n<=s;n<<=1);
    nn=n;
    gn[0][0]=gn[1][0]=1;
    gn[0][1]=pow(g,(p-1)/(n<<1));
    gn[1][1]=pow(gn[0][1],p-2);
    for(int i=2;i<(n<<1);i++){gn[0][i]=gn[0][i-1]*gn[0][1]%p;gn[1][i]=gn[1][i-1]*gn[1][1]%p;}
    inv[1]=1;
    for(int i=2;i<=(n<<1);i++)inv[i]=inv[p%i]*(p-p/i)%p;
}
void NTT(ll c[],int n,int tp=1){
    for(int i=0;i<n;i++){
        r[i]=(r[i>>1]>>1)|((i&1)*(n>>1));
        if(i<r[i])swap(c[i],c[r[i]]);
    }
    for(int i=1;i<n;i<<=1){
        for(int j=0;j<n;j+=(i<<1)){
            for(int k=0;k<i;k++){
                ll x=c[j+k],y=gn[tp!=1][nn/i*k]*c[j+k+i]%p;
                c[j+k]=add(x,y);
                c[j+k+i]=cut(x,y);
            }
        }
    }
}
void INTT(ll c[],int n){
    NTT(c,n,-1);
    for(int i=0;i<n;i++)c[i]=c[i]*inv[n]%p;
}
void inverse(ll c[],int n=n){
    static ll t[262145],tma[262145];
    t[0]=pow(c[0],p-2);
    for(int k=2;k<=n;k<<=1){
        for(int i=0;i<(k<<1);i++)tma[i]=(i<k?c[i]:0);
        for(int i=(k>>1);i<(k<<1);i++)t[i]=0;
        NTT(tma,k<<1);
        NTT(t,k<<1);
        for(int i=0;i<(k<<1);i++)t[i]=cut(add(t[i],t[i]),t[i]*t[i]%p*tma[i]%p);
        INTT(t,k<<1);
    }
    memcpy(c,t,sizeof(ll)*n);
}
void derivative(ll c[],int n=n){for(int i=0;i<n;i++)c[i]=c[i+1]*(i+1)%p;}
void integrate(ll c[],int n=n){for(int i=n-1;i>=1;i--)c[i]=c[i-1]*inv[i]%p;c[0]=0;}
void ln(ll c[],int n=n){
    static ll t[262145];
    for(int i=0;i<(n<<1);i++)t[i]=(i<n?c[i]:0);
    derivative(t,n);
    inverse(c,n);
    NTT(t,n<<1);
    NTT(c,n<<1);
    for(int i=0;i<(n<<1);i++)c[i]=c[i]*t[i]%p;
    INTT(c,n<<1);
    for(int i=n;i<(n<<1);i++)c[i]=0;
    integrate(c,n);
}
void exp(ll c[]){
    static ll t[262145],ta[262145];
    t[0]=1;
    for(int k=2;k<=n;k<<=1){
        for(int i=0;i<(k<<1);i++)ta[i]=t[i];
        ln(ta,k);
        for(int i=0;i<k;i++)ta[i]=cut(c[i],ta[i]);
        ta[0]++;
        NTT(t,k<<1);
        NTT(ta,k<<1);
        for(int i=0;i<(k<<1);i++)t[i]=t[i]*ta[i]%p;
        INTT(t,k<<1);
        for(int i=k;i<(k<<1);i++)t[i]=0;
    }
    memcpy(c,t,sizeof(ll)*n);
}
void pow(ll c[],int k){
    ln(c);
    for(int i=0;i<n;i++)c[i]=c[i]*k%p;
    exp(c);
}
int main(){
    scanf("%d%d",&s,&m);
    for(int i=1;i<=m;i++){
        int x;
        scanf("%d",&x);
        c[x-1]=p-1;
    }
    c[0]=1;
    init();
    inverse(c);
    pow(c,s);
    printf("%lld\n",c[s-1]*inv[s]%p);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值