Cox构建预测模型(5):如何用R语言绘制校准曲线(附全套代码)

临床预测模型作为临床研究的“高阶玩法”,不仅仅是改变临床实践的重要途径,更是发表高分SCI文章的热门选择。但不论零基础的小白,还是已经了解过临床预测模型的同学,刚开始都会一头雾水。简单概括,Cox回归预测模型的基础统计策略大致可以概括为“一表四图”,即均衡性表、列线图、校准图、ROC图、DCA图。

一、文献解读

案例文献是沈阳医学院公共卫生学院学者基于SEER数据库的一项回顾性研究,旨在建立一个列线图来预测老年恶性骨肿瘤(MBT)患者的总生存期(OS)。

1. 摘要

背景:恶性骨肿瘤(MBT)是老年患者死亡的原因之一。我们研究的目的是建立一个列线图来预测老年MBT患者的总生存期(OS)。

方法:从SEER数据库下载了2004年至2018年所有老年MBT患者的临床病理数据。他们被随机分配到训练集(70%)和验证集(30%)。采用单因素和多因素Cox回归分析确定老年MBT患者的独立危险因素。基于这些危险因素构建列线图,以预测老年MBT患者的1年,3年和5年O

这些优化器都是用于机器学习模型训练过程中的参数更新算法,它们并非分布式学习方法本身,而是帮助单台计算机提升学习效率的工具。 1. **随机梯度下降(SGD)**:这是一种基本的优化算法,每次迭代只考虑样本的一个随机梯度,适合大数据集,但它可能会在平坦区域徘徊或震荡。 2. **动量(Momentum)**:引入了一个"记忆"机制,即结合当前梯度和过去移动的方向,使得搜索方向更加稳定,有助于跳出局部极小值。 3. **Nesterov加速梯度(Nesterov Accelerated Gradient, NAG)**:在动量的基础上提前一步计算,预计未来的位置,进一步加速梯度下降的过程。 4. **AdaGrad**:自适应学习率算法,对每一个参数都维护一个单独的学习率,对于稀疏数据特别有效,但长期而言,学习率可能会过早变得非常小。 5. **RMSprop (Root Mean Square Propagation)**:在AdaGrad基础上改进,采用指数移动平均来调整学习率,更好地平衡全局和局部的梯度影响。 6. **Adam**:一种结合了动量和RMSprop的优化器,它使用了动量项和学习率衰减,能够适应不同的权重更新,尤其在深度学习中广泛应用。 以上优化器都不是分布式学习方法,因为它们主要针对的是单个设备上模型的训练。然而,有些变体如Mini-batch SGD是在分布式环境下常用的一种策略,将数据分成小批次进行并行计算。而真正的分布式学习方法,如Spark、Hadoop等,会涉及到多台计算机间的协同工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值