斯特林数是组合数学的内容。
第一类斯特林数可以处理下面的问题:把N个不同元素分为k个环,每个环非空,问有多少分法,记为S(p,k),
S(p,p)=1
S(p,0)=0
递推公式为:S(p,k)=(p-1)*S(p-1,k)+S(p-1.k-1)。
p个人排k个圈,第一种方法是,第k个圈只有p自己,所以加上S(p-1,k-1),还有一种方法是p加入p-1人组成的k个圈,排在任意一个人的左边,加上(p-1)*S(p-1,k)。
第二类斯特林数可以解决下面的问题:把N个元素分为K个集合,每个盒子非空,问有多少方法,即为S(p,k)
S(p,p)=1
S(p,0)=0
S(p,k)=k*S(p-1,k)+S(p-1,k-1)
有两种分法。
1:让p在单独的一个集合里,S(p-1,k-1)
2:让p和其他元素在一个盒子里,k*S(p-1,k);
Bell数:记为B(p)将p个元素分到非空且相同的若干个盒子里。
贝尔数适合递推公式:
它们也适合“Dobinski公式”:
它们也适合“Touchard同余”:若p是任意
质数,那么
B0= B1=1
B(p)=S(p,0)+S(p,1)+.....+S(p,k) (S为第二类斯特林数)
Stirling公式可以用来求n!的近似值。
如果要计算N!为几位数,则我们可以用公式:
而我们同样可以用斯特林公式取lg计算。