第一,二类斯特林数 Bell数 Stirling公式

斯特林数是组合数学的内容。

第一类斯特林数可以处理下面的问题:把N个不同元素分为k个环,每个环非空,问有多少分法,记为S(p,k),

S(p,p)=1

S(p,0)=0

递推公式为:S(p,k)=(p-1)*S(p-1,k)+S(p-1.k-1)。

p个人排k个圈,第一种方法是,第k个圈只有p自己,所以加上S(p-1,k-1),还有一种方法是p加入p-1人组成的k个圈,排在任意一个人的左边,加上(p-1)*S(p-1,k)。


第二类斯特林数可以解决下面的问题:把N个元素分为K个集合,每个盒子非空,问有多少方法,即为S(p,k)

S(p,p)=1

S(p,0)=0

S(p,k)=k*S(p-1,k)+S(p-1,k-1)

有两种分法。

1:让p在单独的一个集合里,S(p-1,k-1)

2:让p和其他元素在一个盒子里,k*S(p-1,k);

Bell数:记为B(p)将p个元素分到非空且相同的若干个盒子里。

贝尔数适合递推公式:
它们也适合“Dobinski公式”:
期望值为1的 泊松分布的''n''次
它们也适合“Touchard同余”:若p是任意 质数,那么
Stirling数S(n, k)是把基数为n的集划分为正好k个非空集的方法的数目。
把任一 概率分布的n次矩以首n个累积量表示的 多项式,其 系数和正是第n个贝尔数。这种数划分的方法不像用Stirling数那个方法粗糙。
贝尔数的指数 母函数

B0= B1=1

B(p)=S(p,0)+S(p,1)+.....+S(p,k)   (S为第二类斯特林数)

Stirling公式可以用来求n!的近似值。

  n! \approx \sqrt{2\pi n}\, \left(\frac{n}{e}\right)^{n}.

如果要计算N!为几位数,则我们可以用公式:\ln(n!) = \ln 1 + \ln 2 + \cdots + \ln n.

而我们同样可以用斯特林公式取lg计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值