【题目背景】
小奇要开采一些矿物,它驾驶着一台带有钻头(初始能力值w)的飞船,按既定路线依次飞过喵星系的n个星球。
【问题描述】
星球分为2类:资源型和维修型。
1.资源型:含矿物质量a[i],若选择开采,则得到a[i]p的金钱,之后钻头损耗k%,即p=p(1-0.01k)
2.维修型:维护费用b[i],若选择维修,则支付b[i]p的金钱,之后钻头修复c%,即p=p(1+0.01c)
(p为钻头当前能力值)
注:维修后钻头的能力值可以超过初始值
请你帮它决策最大化这个收入
【输入格式】
第一行4个整数n,k,c,w。
以下n行,每行2个整数type,x。
type为1则代表其为资源型星球,x为其矿物质含量a[i];
type为2则代表其为维修型星球,x为其维护费用b[i];
【输出格式】
输出一行一个实数(保留两位小数),表示要求的结果。
【样例输入】
5 50 50 10
1 10
1 20
2 10
2 20
1 30
【样例输出】
375.00
【数据范围】
对于30%的数据 n<=100
对于50%的数据 n<=1000,k=100
对于100%的数据 n<=100000,0<=k,c,w,a[i],b[i]<=100
保证答案不超过10^9
思路:正着dp会有后效性,因为当前的p改变会影响后面的收益。所以反着想,假设当前p为1,f[i]表示i到n获得的最大收益。那么
double p1=(1-0.01*k);
double p2=(1+0.01*c);
if(type[i]==1) f[i]=max(f[i+1],f[i+1]*p1+a[i]);
else f[i]=max(f[i+1],f[i+1]*p2-a[i]);
最后答案就是f[1]*w.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
double f[100500];
int a[100500];int type[100500];
int main()
{
double w,k,c;int n;
cin>>n>>k>>c>>w;
double p1=(1-0.01*k);
double p2=(1+0.01*c);
for(int i=1;i<=n;i++) cin>>type[i]>>a[i];
for(int i=n;i>=1;i--)
{
if(type[i]==1) f[i]=max(f[i+1],f[i+1]*p1+a[i]);
else f[i]=max(f[i+1],f[i+1]*p2-a[i]);
}
printf("%.2lf\n",w*f[1]);
return 0;
}