【HYSBZOJ】【高斯消元】【期望DP】2337 [HNOI2011]XOR和路径

HYSBZOJ 2337 [HNOI2011]XOR和路径

题目大意

◇题目传送门◆

分析

我们先考虑将这个问题转化为一个期望 DP ,设 f ( i ) f(i) f(i)为从 i i i走到 N N N的异或和的期望值,并记节点 i i i的度数为 d ( i ) d(i) d(i) u , v u,v u,v之间的边权为 v u , v v_{u,v} vu,v

f ( u ) f(u) f(u)可以与它邻接的节点转移过来,所以不难得出:

f ( u ) = 1 d ( u ) × ∑ f ( v ) ⊕ v u , v f(u)=\frac{1}{d(u)}\times \sum f(v)\oplus v_{u,v} f(u)=d(u)1×f(v)vu,v

然而这个图里面有自环、重边等,这个方程是有后效性的。

我们发现总点数非常小,所以我们可以考虑高斯消元来求解这个方程。

但如果用高斯消元来做的话,异或实在是不好处理。但是我们可以将数按照二进制位拆开来做。

由于期望的线性性( E ( A + B ) = E ( A ) + E ( B ) E(A + B) = E(A) + E(B) E(A+B)=E(A)+E(B)),异或运算每位都互不影响,那么这样做显然是对的。

则重新设 f ( u ) f(u) f(u) u u u N N N的路径上二进制第 k k k位上为 1 1 1的概率(也就是该位上为 1 1 1的期望), v u , v v_{u,v} vu,v表示边 u → v u\rightarrow v uv的边权上二进制的第 k k k位。

那么就可以列出如下式子:

f ( u ) = 1 d ( u ) × ( ∑ v u , v = 0 f ( v ) + ∑ v u , v = 1 ( 1 − f ( v ) ) ) f(u)=\frac{1}{d(u)}\times \left(\sum_{v_{u,v}=0}f(v)+\sum_{v_{u,v}=1}(1-f(v))\right) f(u)=d(u)1×vu,v=0f(v)+vu,v=1(1f(v))

简单整理一下:

d ( u ) f ( u ) + ∑ v u , v = 0 f ( v ) + ∑ v u , v = 1 ( 1 − f ( v ) ) = ∑ [ v u , v = 1 ] d(u)f(u)+\sum_{v_{u,v}=0}f(v)+\sum_{v_{u,v}=1}(1-f(v))=\sum[v_{u,v}=1] d(u)f(u)+vu,v=0f(v)+vu,v=1(1f(v))=[vu,v=1]

这样就可以用高斯消元做了。

我们对于二进制下的每一位都这样来一遍,最终的答案就是 ∑ i = 1 30 2 i f ( 1 ) \sum_{i=1}^{30}2^if(1) i=1302if(1)

总时间复杂度为 O ( N 3 ) O(N^3) O(N3)

参考代码

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int Maxn = 100;
const int Maxm = 10000;
const double EPS = 1e-7;

struct Edge {
	int to, dis;
	Edge *nxt;
};
Edge pool[Maxm * 2 + 5];
Edge *G[Maxn + 5], *ecnt = &pool[0];
void addedge(int u, int v, int dis) {
	Edge *p = ++ecnt;
	p->to = v, p->dis = dis;
	p->nxt = G[u], G[u] = p;
}

int N, M;
int deg[Maxn + 5];

double g[Maxn + 5][Maxn + 5];
void Gauss() {
	for(int i = 1; i <= N; i++) {
		int to = i;
		for(; to <= N; to++)
			if(fabs(g[to][i]) > EPS) break;
		if(to > N) continue;
		if(to != i)
			for(int j = 1; j <= N + 1; j++) swap(g[to][j], g[i][j]);
		double t = g[i][i];
		for(int j = 1; j <= N + 1; j++) g[i][j] /= t;
		for(int j = 1; j <= N; j++)
			if(j != i) {
				t = g[j][i];
				for(int k = 1; k <= N + 1; k++)
					g[j][k] -= t * g[i][k];
			}
	}
}

int main() {
#ifdef LOACL
	freopen("in.txt", "r", stdin);
	freopen("out.txt", "w", stdout);
#endif
	scanf("%d %d", &N, &M);
	for(int i = 1; i <= M; i++) {
		int u, v, w;
		scanf("%d %d %d", &u, &v, &w);
		addedge(u, v, w), ++deg[u];
		if(u != v) addedge(v, u, w), ++deg[v];
	}
	double ans = 0;
	for(int k = 30; k >= 0; k--) {
		memset(g, 0, sizeof g);
		for(int u = 1; u < N; u++) {
			g[u][u] = -deg[u];
			for(Edge *p = G[u]; p != NULL; p = p->nxt) {
				int v = p->to, w = (p->dis >> k) & 1;
				if(w) g[u][v]--, g[u][N + 1]--;
				else g[u][v]++;
			}
		}
		g[N][N] = 1;
		Gauss();
		ans += (1 << k) * g[1][N + 1];
	}
	printf("%.3f", ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值