目标跟踪
文章平均质量分 55
小白 AI 日记
昨天院子里来了一只左眼是蓝色右眼是橙色的小猫
展开
-
Object Track(三):经典算法复现(3)-光流法基本原理和简单实现
真的,无论多少次我还是会感叹,高翔的《SLAM十四讲》YYDS。把复杂的问题解释的很清楚。 基本原理-光流定义 以下截图皆来自《SLAM十四讲》 光流的OpenCV简单实现 #!/usr/bin/env python ''' Lucas-Kanade tracker ==================== Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack for track ini...原创 2021-10-30 23:12:55 · 630 阅读 · 0 评论 -
Object Track(二):经典算法复现(2)-使用Camshift对选取的目标追踪
#!/usr/bin/env python ''' Camshift tracker ================ 该程序展示了如何使用meanShift(或者CamShift)算法跟踪目标物体 目标物体通过鼠标自左上角至右下角两点框选区域选取 Usage: ------ camshift.py [<video source>] To initialize tracking, select the object with mouse Keys: ----- .原创 2021-10-30 16:21:59 · 657 阅读 · 0 评论 -
Object Track(一):经典算法复现(1)-Meanshift and Camshift
复现一些经典算法,了解object track任务的发展 Meanshift Meanshift的基本原理很简单,假设有一个点的集合。(可以是像素分布,例如直方图反投影)。设置一个小窗口(形状可能是一个圆形),目标是将该窗口移到最大像素密度(或区域内包含最大点的个数)的区域。如下图所示: 初始窗口以蓝色圆圈显示,名称为“C1”。其原始中心以蓝色矩形标记,名称为“C1_o”。但是,如果找到该窗口内点的质心(密度平均点),则会得到点“C1_r”(标记为蓝色小圆圈),它是此刻窗口的真实质心。当然现在的它原创 2021-10-30 15:26:26 · 537 阅读 · 0 评论