torch.bernoulli 的使用方法(附代码示例)

torch.bernoulli 的使用方法(附代码示例)

功能解释

*torch.bernoulli(input, , generator=None, out=None) → Tensor
从伯努利分布中提取二进制随机数(0或1),输入张量应为包含用于绘制二进制随机数的概率的张量。因此,输入中的所有值都必须在以下范围内(0,1)。
第i个元素的输出tensor将要根据输入的第i个概率值,来决定是否生成1值。
输出tensor仅仅只有0或1值,并且其形状和输入的Input的形状是一样的。
输出out可以是一个整型类型,但是输入必须是浮点型数据类型。

参数

 input (Tensor)-对于伯努利分布的输入概率值。
 generator (torch.Generator, optional) –为了采样,一个伪随机数生成器。
 out(Tensor, optional) –输出的tensor。

代码示例

这里是代码实现部分

>>> a = torch.empty(3, 3).uniform_(0, 1)  # generate a uniform random matrix with range [0, 1]
>>> a
tensor([[ 0.1737,  0.0950,  0.3609],
        [ 0.7148,  0.0289,  0.2676],
        [ 0.9456,  0.8937,  0.7202]])
>>> torch.bernoulli(a)
tensor([[ 1.,  0.,  0.],
        [ 0.,  0.,  0.],
        [ 1.,  1.,  1.]])

>>> a = torch.ones(3, 3) # probability of drawing "1" is 1
>>> torch.bernoulli(a)
tensor([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.]])
>>> a = torch.zeros(3, 3) # probability of drawing "1" is 0
>>> torch.bernoulli(a)
tensor([[ 0.,  0.,  0.],
        [ 0.,  0.,  0.],
        [ 0.,  0.,  0.]])
<think>好的,我现在需要解决用户关于如何用Python复现BERT模型代码或进行源码解析的问题。首先,我需要整理已有的引用资料,看看有哪些可以直接用上的信息。 用户提到了几个引用,其中引用[2]和引用[5]提到了使用Hugging Face的transformers库来加载预训练的BERT模型,并进行微调。引用[3]则提到了用keras-bert库构建BERT模型进行情感分析,还提供了论文和官方仓库的链接。引用[4]讨论了在GPU上复现BERT实验结果的方法,比如设置随机种子。引用[5]还提到了PyTorch训练BERT分类器的例子。 首先,我应该分步骤回答用户的问题。用户可能希望了解如何从零开始复现BERT,或者如何使用现有库来实现。考虑到从头实现BERT非常复杂,可能需要先指导用户使用现有的库,比如Hugging Face的transformers,然后再提供源码解析的资源。 接下来,我需要检查是否有必要提到设置随机种子以确保复现性,引用[4]中的内容可以在这里应用。然后,用户可能需要代码示例,引用[2]和引用[5]中的代码片段可以作为例子,展示如何加载模型和进行训练。 另外,用户可能需要了解BERT的原理,所以需要引用论文和官方仓库,如引用[3]中的链接。同时,可以推荐一些教程,比如使用keras-bert库进行情感分析的案例,这有助于用户实际应用。 可能还需要提到复现BERT的注意事项,比如数据预处理、模型结构、训练技巧等,但根据现有的引用资料,可能需要集中在已有的信息上,避免超出引用范围。 最后,生成相关问题,可能需要围绕BERT的实现细节、优化方法、应用场景等展开,确保问题与用户的需求相关,并帮助用户深入学习。 现在需要组织这些思路,按照用户提供的结构,分步骤回答,并正确引用资料。同时,确保使用正确的LaTeX格式,比如行内公式用$...$,独立公式用$$...$$,并检查所有引用标记是否正确放置。</think>### BERT模型代码实现与复现指南 #### 一、BERT模型实现的主要方式 1. **使用预训练模型(推荐)** 通过Hugging Face的`transformers`库快速加载预训练模型并微调: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('google-bert/bert-base-uncased') # [^2] model = AutoModelForSequenceClassification.from_pretrained('google-bert/bert-base-uncased') # [^2] ``` 2. **基于PyTorch从头实现** 需要实现Transformer编码器、注意力机制等核心组件。以下是训练流程示例: ```python import torch from transformers import AdamW optimizer = AdamW(model.parameters(), lr=5e-5) for epoch in range(3): for batch in train_loader: outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() # [^5] ``` 3. **使用Keras实现** `keras-bert`库提供高层API接口: ```python from keras_bert import get_base_dict, get_model, gen_batch_inputs model = get_model(token_num=20000) # 基础BERT模型结构[^3] ``` #### 二、关键实现细节 1. **模型结构核心组件** - 多头注意力机制:$ \text{MultiHead}(Q,K,V) = \text{Concat}(head_1,...,head_h)W^O $ 其中 $head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$ - 层归一化:$ \text{LayerNorm}(x + \text{Sublayer}(x)) $ 2. **预训练任务实现** ```python # Masked Language Model任务示例 masked_positions = torch.bernoulli(torch.full(input_shape, 0.15)) loss = cross_entropy(outputs.logits[masked_positions], labels[masked_positions]) ``` #### 三、复现注意事项 1. **可复现性设置** ```python def set_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True # [^4] ``` 2. **数据预处理规范** - WordPiece分词:`[CLS] + tokens + [SEP]` 格式 - 输入格式:`input_ids + token_type_ids + attention_mask` #### 四、推荐学习资源 1. **官方实现** - Google官方代码库:https://github.com/google-research/bert - 论文解读:BERT: Pre-training of Deep Bidirectional Transformers 2. **实践教程** - 使用`keras-bert`实现情感分析:微博情感分析案例 - PyTorch训练完整流程:分类任务示例
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值