29. 两数相除
给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend 除以除数 divisor 得到的商。
整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2
示例 1:
输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:
输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333..) = -2
提示:
被除数和除数均为 32 位有符号整数。
除数不为 0。
假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。
代码实现
class Solution {
public int divide(int dividend, int divisor) {
//边界条件
if(dividend==Integer.MIN_VALUE){
if(divisor == 1){
return Integer.MIN_VALUE;
}else if(divisor == -1){
return Integer.MAX_VALUE;
}
}
//正负标志位
boolean flag = (dividend>0&&divisor>0)||(dividend<0&&divisor<0);
//防止溢出 我们用负数进行处理
dividend = -Math.abs(dividend);
divisor = -Math.abs(divisor);
int res = 0;
while(dividend<=divisor){
int temp = divisor;
int c = 1;
//尽可能的倍增除数&倍增 被除数中含有的原有除数个数
while(dividend -temp <=temp){
temp = (temp<<1); //倍增除数
c= (c<<1);
}
//此时被除数减去倍增后的除数 是因为 被除数中含有的原有除数个数已经倍增
dividend -= temp;
res+=c; //倍增后的个数赋值给res
}
return flag?res:-res;
}
}