第七届 蓝桥杯 省赛 第八题 四平方和

四平方和定理,又称为拉格朗日定理: 
每个正整数都可以表示为至多4个正整数的平方和。 
如果把0包括进去,就正好可以表示为4个数的平方和。

比如: 
5 = 0^2 + 0^2 + 1^2 + 2^2 
7 = 1^2 + 1^2 + 1^2 + 2^2 
(^符号表示乘方的意思)

对于一个给定的正整数,可能存在多种平方和的表示法。 
要求你对4个数排序: 
0 <= a <= b <= c <= d 
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法

程序输入为一个正整数N (N<5000000) 
要求输出4个非负整数,按从小到大排序,中间用空格分开

例如,输入: 

则程序应该输出: 
0 0 1 2

再例如,输入: 
12 
则程序应该输出: 
0 2 2 2

再例如,输入: 
773535 
则程序应该输出: 
1 1 267 838

注意事项:
1.之所以使用map先统计前两个数之和是因为,四层循环可能会超时,这样做在一定程度上,起到了剪枝的作用

2.因为蓝桥杯没有vip,没有提交,只是过了测试样例,所以......仅供参考

#include<iostream>
#include<cmath>
#include<map>
using namespace std;
int main(){
	int n,nm;
	double tmp;
	map<int,int> mp;
	scanf("%d",&n);
	nm = sqrt(n);//对n进行开平方,赋值给int类型 
	for(int i = 0;i <=nm;i++)//注意是小于等于nm,而不是n 
		for(int k = i;k <= nm;k++)//k从i开始,不是从0开始,因为题目中说到 0 <= a <= b <= c <= d,注意细节 
			mp[i * i + k * k] = 1;//使用map容器进行保存,数值大小不会超过int类型 
	for(int i = 0;i <= nm;i++)//从0开始,到nm结束
		for(int k = i;k <= nm;k++){//从i开始,到nm结束,注意细节,细节决定成败 
			if(mp[n-i * i - k * k] != 1)//如果剩下的数不是1,说明剩下的数也不能构成平方和 
				continue;//从下一个开始 
			for(int a = k;a <= nm;a++){//从k开始,到nm结束,一开始总是忘记,重点!!! 
				tmp = sqrt(n - i * i - k * k - a * a);//定义为double类型 
				if(tmp == (int)tmp){//如果开平方数等于强制转换后的int类型,说明能整除,直接输出 
					printf("%d %d %d %d\n",i,k,a,(int)tmp);//输出要特别注意一点,因为tmp是double类型的,输出int类型时,应该进行强转 
					return 0;//直接进行返回,省得一层层返回 
				}					
			}
		}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值