四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。
比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
注意事项:
1.之所以使用map先统计前两个数之和是因为,四层循环可能会超时,这样做在一定程度上,起到了剪枝的作用
2.因为蓝桥杯没有vip,没有提交,只是过了测试样例,所以......仅供参考
#include<iostream>
#include<cmath>
#include<map>
using namespace std;
int main(){
int n,nm;
double tmp;
map<int,int> mp;
scanf("%d",&n);
nm = sqrt(n);//对n进行开平方,赋值给int类型
for(int i = 0;i <=nm;i++)//注意是小于等于nm,而不是n
for(int k = i;k <= nm;k++)//k从i开始,不是从0开始,因为题目中说到 0 <= a <= b <= c <= d,注意细节
mp[i * i + k * k] = 1;//使用map容器进行保存,数值大小不会超过int类型
for(int i = 0;i <= nm;i++)//从0开始,到nm结束
for(int k = i;k <= nm;k++){//从i开始,到nm结束,注意细节,细节决定成败
if(mp[n-i * i - k * k] != 1)//如果剩下的数不是1,说明剩下的数也不能构成平方和
continue;//从下一个开始
for(int a = k;a <= nm;a++){//从k开始,到nm结束,一开始总是忘记,重点!!!
tmp = sqrt(n - i * i - k * k - a * a);//定义为double类型
if(tmp == (int)tmp){//如果开平方数等于强制转换后的int类型,说明能整除,直接输出
printf("%d %d %d %d\n",i,k,a,(int)tmp);//输出要特别注意一点,因为tmp是double类型的,输出int类型时,应该进行强转
return 0;//直接进行返回,省得一层层返回
}
}
}
return 0;
}