论文笔记——从全局角度出发识别网络中有影响力的节点

这篇论文探讨了从全局视角识别复杂网络中具有影响力的节点。除了考虑节点的自身度(自身重要性),还引入了全局重要性,即节点与其连接的节点重要性的加权和,同时考虑了节点间距离的影响。通过调节α和β参数,可以平衡自身和全局重要性。论文以一个示例图说明,即使低度节点也可能具有关键作用,如保持网络连通。通过这种方法,可以更准确地识别网络中的关键节点。
摘要由CSDN通过智能技术生成

Identifying influential nodes in complex networks from global perspective

又是一篇来自电子科大的论文,发布在Chaos, Solitons and Fractals期刊,该论文在识别有影响力节点时不仅考虑了节点自身的重要性,也同时考虑了图中所有节点的影响力。

提出的方法

自身重要性(self importance)

在这里插入图片描述
其中,α是一个自身重要性的调节因子。 n n n是节点个数。可以看出,节点的自身重要性与其度成正比。

全局重要性

节点的重要性也取决于连接到它的节点的重要性。 它连接的节点越重要,它就越重要。 然而,节点之间的距离不容忽视,它与节点的影响成反比。
在这里插入图片描述
其中,β是一个全局重要性的调节因子。

排序

在这里插入图片描述
α和β的两种系数使该方法更加灵活。如果对节点本身重要性的要求很高,可以增加α的价值。否则,如果其目的是寻找桥接节点,则可以增加β。在这篇论文中,为了简便起见,α和β都设置为1。

在这里插入图片描述
以上图为例。不同颜色的节点表示与节点1的不同距离。例如,从节点2、3、4到1的距离都是1,因此,它们的颜色都是黄色。如果仅从度的角度来看,度为4的节点2、3无疑是最重要的,而节点1的重要性则被严重忽视了。从图中可以看出,如果节点1被删除,整个图形将不是一个连通图,因此节点1的重要性与节点2和3一样重要。 图中节点的GIN如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值