Identifying influential nodes in complex networks from global perspective
又是一篇来自电子科大的论文,发布在Chaos, Solitons and Fractals期刊,该论文在识别有影响力节点时不仅考虑了节点自身的重要性,也同时考虑了图中所有节点的影响力。
提出的方法
自身重要性(self importance)
其中,α是一个自身重要性的调节因子。
n
n
n是节点个数。可以看出,节点的自身重要性与其度成正比。
全局重要性
节点的重要性也取决于连接到它的节点的重要性。 它连接的节点越重要,它就越重要。 然而,节点之间的距离不容忽视,它与节点的影响成反比。
其中,β是一个全局重要性的调节因子。
排序
α和β的两种系数使该方法更加灵活。如果对节点本身重要性的要求很高,可以增加α的价值。否则,如果其目的是寻找桥接节点,则可以增加β。在这篇论文中,为了简便起见,α和β都设置为1。
以上图为例。不同颜色的节点表示与节点1的不同距离。例如,从节点2、3、4到1的距离都是1,因此,它们的颜色都是黄色。如果仅从度的角度来看,度为4的节点2、3无疑是最重要的,而节点1的重要性则被严重忽视了。从图中可以看出,如果节点1被删除,整个图形将不是一个连通图,因此节点1的重要性与节点2和3一样重要。 图中节点的GIN如下: