一、社会网络节点影响力的定义
影响力可以定性分析也可以定量分析,影响力具有不同的作用范围。到目前为止,影响力并没有统一 的形式化定义和标准的计算方法。社会网络的出现为定义和研究节点影响力提供了定量基础,定量度量节点影响力需要构建一个可测量的指标。个体与个体之间通过各种关系连接形成社会网络拓扑结构影响力可以表达为一个个体的特性,也可以表达为个体之间的作用形式,所以影响力具有全局和局部范围。 社会学家定性地分析影响力,指出利用网络统计指标得出的影响力都属于全局影响力。
分析节点影响力相关定义与表现形式可以看出,节点的全局影响力越大,节点对信息、行为在整个社会网络中的传播控制能力越强,社会网络中一小部分最具影响力的节点能够控制整个社会网络中大部分的传播。而 一个节点对另一个节点的影响力则属于局部影响力,节点对另一个节点的影响力越大,后者在社会网络中就越 会追随和模仿前者的行为。从定量形式度量节点局部影响力角度出发,针对不同应用的整体要求,结合局部影响力和网络结构来定义节点影响力,能够取得较好的效果。
二、社会网络节点影响力的度量
社会网络的拓扑结构、用户交互行为、用户内容构成了社会网络的3个要素。可以看出,从拓扑结构、行为特征、内容特征这3个维度来度量影响力具有不同的研究角度和典型方法。
三、基于拓扑结构的度量
1.基于局部属性
基于局部属性的度量指标最常见的为度中心性,度定义为节点的邻居节点的数量,度中心性反映的是在整个网络中当前节点的直接影响力。 社会网络中,联系紧密的多个好友形成社团的现象在社会网络中很常见。局部聚类系数用于衡量节点的邻居节点之间联系的紧密程度。局部聚类系数等于节点vi的邻居节点之间连边的数量与邻居节点之间可以连边的最大数量之比。 无向图聚类系数计算公式如下所示:
其中,ki为节点vi指向其他节点的连边数量与其他节点指向vi的连边数量的和,因为在无向图中,边不区分方向, 因此除以2 有向图聚类系数计算公式如下所示:
根据此图以及研究发现,节点聚集系数越高,节点的影响力越小;度值大但聚类系数较小的节点易受其他节点的影响。将邻居间的关系作为影响力的相关因素,模型提高了精度,但时间复杂度却有所增加。
2.基于全局属性
基于节点全局属性的节点影响力度量指标主要考察节点所在网络的全局网络信息,这些指标能够较好地反映节点的拓扑特性,但时间复杂度较高,多数指标不适用于大规模网络。
介数中心性:定义为网络中两个节点之间的最短路径经过当前节点的次数,介数中心性描述的是信息在社会网络中传播时经过该节点的频率。该指标值越大,表示在网络拓扑中该节点越繁忙。若移除介数大的节点,则会造成网络拥堵,不利于信息传播。
紧密中心性:衡量节点达到其他节点的速度,该指标值越大,表示当前节点到达另一节点的路径越多且路径长度较短。该指标可以衡量节 点对其他节点的间接影响力。
特征向量中心性:是度量节点全局影响力的一个重要指标,特征向量中心性不仅考虑邻居节点的数量,还考虑邻居节点的重要性,将单个节点的影响力看成其他节点影响力的线性组合。
K-核分解示意图
3.基于随机游走
将节点间的连接看成网页间的链接,可以计算节点的PageRank值,这样进行排序就能度量节点影响力。
基于随机游走的影响力度量方法用邻居节点来刻画节点的影响力,虽然避免了噪声,但却忽略了节点自身的性质。
4.基于社团关系
基于社团结构的节点影响力指标不仅考虑了节点的邻居节点,还考虑了邻居节点的社团性质,优点是将个体与群体之间的影响力体现出来,但是对于度量的结果依赖于社会网络的社团性质和社团划分算法,对于社团结构不明显的社会网络,其度量效果并不好。
如图所示,图中21个节点被分为4个社团,2号连接了4个社团,而5号节点位于1个社团的内部。节点2 的比值为4,节点5的比值为l,因此,2号节点的影响力比度数同样为5但只在一个社团内部的5号节点影响力要大。
5. 基于拓扑结构的度量总结
利用拓扑结构度量节点影响力是最基本的影响力度量方法。这类方法拥有多学科的理论基础,从整个社会网络宏观层面上取得了很好的效果,部分度量指标简单、易算,在大规模网络上拥有较大的优势。
但是社会网络拓扑结构只能从宏观层面表示整个社会网络,并不能刻画微观层面上节点对其他节点产生影响力的形成以及演化规律。社会网络拓扑结构对于节点本身的行为和节点对其他节点多种形式的交互行为的利用太少。
四、基于内容与行为特征的度量
1.基于信息内容的度量
社会网络中不仅有用户间的链接关系,还有用户发布信息的文本内容,信息内容是影响力传播的载体,结合用户的信息内容则有助于分析影响力促进信息传播背后的机理。
基于信息内容的影响力度量方法和模型能够更加细致地描述用户在影响他人时所表现出来的具体形式, 这种影响可能导致他人在信息内容上与用户的相似性和一致性,也有可能是导致他人在某个话题上情感态度发生转变的原因。然而,这类方法忽略了用户间在长期交流过程中形成的相对稳定的影响力。
基于回复信息内容的影响力传播模型IDM模型,若用户y对用户x发布的内容进行了回复,则y受到x影响的程度由两者所发布的内容的相似度所决定.计算公式如下:
其中,ixy代表用户x对用户y的影响力,wx为用户x所发布信息内容的信息条目集合,wy为用户y对用户x 所发布信息的回复内容的信息条目集合。若用户z继续对用户y的内容进行了回复,则用户x对用户z的间接影响力定义为
2.基于用户行为的度量
社会网络中的用户发布内容信息,然后通过交互行为将内容传播,通过分析这些行为,不仅可以度量用户之间的影响力强度,还能预测用户行为在社会网络上的传播速度和范围。基于用户行为度量的通常是节点间的影响力,属于局部影响力。局部影响力可以通过加权平均以及随机游走等方法转化成全局影响力 。
用户转发消息的概率受其邻居中已转发此消息邻居之间形成的连通图的个数的影响,局部影响力度量用户朋友圈的结构对转发行为的影响。如图给出一个实例,红色点表示已经转发的邻居节点,白色代表未转发,图一所示的红 色节点形成两个连通子图,图二、图三分别形成4个和6个连通子图。根据文献结果可知,矿节点在图一所示状态下转发消息的概率要远超图二、图三所示的状态。
3.基于时间因素的度量
将时间因素考虑 到影响力度量模型中,能有效提高模型的精度。
五、影响力度量方法总结
用户的影响力看不见摸不着,然而用户通过自身影响力使社会网络中其他用户产生的变化却是可以观测到的,这种变化或表现为内容上的相似性和行为上的一致性,或表现为观念态度的转变。基于用户信息和行为特征的影响力度量方法相比于基于拓扑结构的影响力度量方法能够更好地刻画用户与用户之间影响力的形成和发展状况。
六、影响力传播模型
独立级联模型(IC模型): 在社会网络G=(V,E)中,部分节点在初始时刻处于活跃状态,如果节点v在某时刻t由不活跃状态被激活变为活跃状态,则节点v在t时刻有单次机会尝试去激活每一个处于不活跃状态的邻居节点。若节点 u处于不活跃状态且其有多个邻居节点处于活跃状态,则这些活跃的邻居节点激活u节点的顺序是任意的。例如,节点v的邻居节点u在t时刻处于不活跃状态,则节点v以概率去激活节点u,如果成功激活,则节点u从t+1时刻起变为活跃状态,无论成功与否,节点v不会再试图去激活节点u。传播过程从初始状态开始迭代直到G中没有产生新的活跃节点为止。
线性阈值模型(LT模型): 在社交网络G=(V,E)中,对任意节点v都有一个对应阈值表示只有当节点v的邻居节点对节点v的影响力之和超过阈值时, 节点v才能被激活。节点v对其邻居节点u的影响力权重为w,且节点v对所有邻居节点的影响力权重之和不超过1,表示节点v的邻居节点,即:给定初始时刻处于活跃状态的用户集合为A,传播过程和独立级联模型类似,不活跃节点v状态受其所有活跃状态节点的影响。如果t时刻节点v处于不活跃状态,且其所有处于活跃状态的邻居节点对节点v的影响力之和大于节点V的阈值,则节点v从t+1时刻起变为活跃状态。 通用级联模型 通用阈值模型等使线性阈值中的线性关系变得更加灵活,优化了独立级联中的影响概率,从而得到更大的覆盖范围。
七、影响力最大化
影响力最大化就是找到社会网络中少量的种子节点集合,使影响力在短时间内通过种子节点迅速传遍整个社会网络。影响力最大化的提出引起了大量研究者的关注,许多人都进行了研究,也有很大成就。
自影响力最大化问题提出以来一直是研究热点,无论是模型的精度还是效率都得到了不断的提高。然而在传播模型中,用户间的影响力传播概率通常在一定范围内随机取值,而没有考虑真实社会网络中用户之间传播 率的差异性,从而导致模型在真实网络中的适用性不高。利用用户的历史数据和机器学习等方法来度量用户间的影响概率,这也是当前影响力最大化研究仍需要解决的问题之一。
八、影响力的评价与应用
由于影响力没有一致的定义和度量方法,造成迄今为止节点影响力研究并没有公认的统一的评价指标。节点影响力研究模型和指标虽然数量众多,但都是从各自研究角度去分析节点影响力对其他因素所产生的效果,而没有给出节点影响力的形式化定义,虽然没有统一的模型或指标去衡量用户影响力分析模型的好坏,但常见的方法却有迹可循。常见的用户影响力评价方法有基于信息检索的评价方法、基于传播动力学的评价方法、基于鲁棒性和脆弱性的方法以及基于影响力的传播模型。
九、 影响力进一步研究方向
(1)节点影响力评价标准缺失一直是影响力分析度量模型的一大难点。
(2)社会网络节点影响力具有动态性,现有研究大多在静态网络拓扑结构上考察用户的影响力或者考察用户影响力在静态拓扑结构上随时间的变化情况。
(3)将更多因素考虑到节点影响力度量模型中以提高模型的效果,使模型更加接近真实社会中的影响力。
(4)关于群体影响力的研究非常 少见,值得进行深入研究。
(5)综合利用社会网络用户的多种行为和内容,对影响力统一分析建模,是影响力研究所面临的又一挑战。
引用文章:[1]韩忠明, 陈炎, 刘雯,等. 社会网络节点影响力分析研究[J]. 软件学报, 2017, 28(1):21.