细粒度分类:CAL论文笔记——Counterfactual Attention Learning for Fine-Grained Visual Categorization

论文《Counterfactual Attention Learning for Fine-Grained Visual Categorization》探讨了如何通过因果推理改进细粒度图像分类的注意力学习。现有的注意力机制常依赖最后的预测损失,而忽视了注意力与预测间的因果关系。作者提出了反事实注意力学习(CAL)框架,通过对比事实和反事实注意力的影响来量化和优化注意力质量,减少数据偏差的影响。实验显示,CAL能引导模型关注关键特征,提高分类准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

细粒度分类:CAL论文笔记——Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

综述

论文题目:《Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification》

会议时间:IEEE International Conference on Computer Vision 2021 (ICCV, 2021)

论文地址:https://openaccess.thecvf.com/content/ICCV2021/papers/Rao_Counterfactual_Attention_Learning_for_Fine-Grained_Visual_Categorization_and_Re-Identification_ICCV_2021_paper.pdf

源码地址(PyTorch版本):https://github.com/raoyongming/CAL

针对领域:细粒度图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值