44 | 奇异值分解:如何挖掘潜在的语义关系?

今天,我们来聊另一种降维的方法,SVD 奇异值分解(Singular Value Decomposition)。它的核心思路和 PCA 不同。PCA 是通过分析不同维度特征之间的协方差,找到包含最多信息量的特征向量,从而实现降维。而 SVD 这种方法试图通过样本矩阵本身的分解,找到一些“潜在的因素”,然后通过把原始的特征维度映射到较少的潜在因素之上,达到降维的目的。

这个方法的思想和步骤有些复杂,它的核心是矩阵分解,首先,让我们从方阵的矩阵分解开始。

方阵的特征分解

在解释方阵的分解时,我们会用到两个你可能不太熟悉的概念:方阵和酉矩阵。为了让你更顺畅的理解整个分解的过程,先给你解释下这两个概念。

方阵(Square Matrix)是一种特殊的矩阵,它的行数和列数相等。如果一个矩阵的行数和列数都是 n,那么我们把它称作 n 阶方阵。

如果一个矩阵和其转置矩阵相乘得到的是单位矩阵,那么它就是一个酉矩阵(Unitary Matrix)。

其中 X’表示 X 的转置,I 表示单位矩阵。换句话说,矩阵 X 为酉矩阵的充分必要条件是 X 的转置矩阵和 X 的逆矩阵相等。

下面我们需要证明 X=VΣV’ 成立,我把推算的过程写在下面了。

讲到这里,相信你对矩阵的特征分解有了一定程度的认识。可是,矩阵 X 必须为对称方阵才能进行有实数解的特征分解。那么如果 X 不是方阵,那么应该如何进行矩阵的分解呢?这个时候就需要用到奇异值分解 SVD 了。

矩阵的奇异值分解

SVD 分解和特征分解相比,在形式上是类似的。假设矩阵 X 是一个 m×n 维的矩阵,那么 X 的 SVD 为 X=UΣV’。

不同的地方在于,SVD 并不要求要分解的矩阵为方阵,所以这里的 U 和 V’ 并不是互为逆矩阵。其中 U 是一个 m×m 维的矩阵,V 是一个 n×n 维的矩阵。而 Σ 是一个 m×n 维的矩阵,对于 Σ 来说,只有主对角线之上的元素可以为非 0,其他元素都是 0,而主对角线上的每个元素就称为奇异值。U 和 V 都是酉矩阵,即满足 U’U=I,V’V=I。

类似地,我们得到了矩阵 XX’ 的 m 个特征值和对应的 m 个特征向量 u。通过 XX’的所有特征向量构造一个 m×m 的矩阵 U。这就是上述 SVD 公式里面的 U 矩阵了。通常,我们把 U 中的每个特征向量叫作 X 的左奇异向量

现在,包含左右奇异向量的 U 和 V 都求解出来了,只剩下奇异值矩阵 Σ 了。之前我提到,Σ 除了对角线上是奇异值之外,其他位置的元素都是 0,所以我们只需要求出每个奇异值 σ 就可以了。这个解可以通过下面的公式推导求得:

通过上述几个步骤,我们就能把一个 mxn 维的实数矩阵,分解成 X=UΣV’ 的形式。说到这里,你可能会疑惑,把矩阵分解成这个形式有什么用呢?实际上,在不同的应用中,这种分解表示了不同的含义。下面,会使用潜在语义分析的案例,带你看看,在发掘语义关系的时候,SVD 分解起到了怎样的关键作用。

潜在语义分析和 SVD

在讲向量空间模型的时候,我解释了文档和词条所组成的矩阵。对于一个大的文档集合,我们首先要构造字典,然后根据字典构造每篇文档的向量,最后通过所有文档的向量构造矩阵。矩阵的行和列分别表示文档和词条。基于这个矩阵、向量空间中的距离、余弦夹角等度量,我们就可以进行基于相似度的信息检索或文档聚类。

不过,最简单的向量空间模型采用的是精确的词条匹配,它没有办法处理词条形态的变化、同义词、近义词等情况。我们需要使用拉丁语系的取词根(Stemming)操作,并手动建立同义词、近义词词典。这些处理方式都需要人类的语义知识,也非常依赖人工的干预。另外,有些词语并不是同义词或者近义词,但是相互之间也是有语义关系的。例如“学生”“老师”“学校”“课程”等等。

那么,我们有没有什么模型,可以自动地挖掘在语义层面的信息呢?当然,目前的计算机还没有办法真正理解人类的自然语言,它们需要通过大量的数据,来找到词语之间的关系。下面我们就来看看潜在语义分析 LSA(Latent Semantic Analysis)或者叫潜在语义索引 LSI(Latent Semantic Index)这种方法,是如何做到这点的。

和一般的向量空间模型有所不同,LSA 通过词条和文档所组成的矩阵,发掘词和词之间的语义关系,并过滤掉原始向量空间中存在的一些“噪音”,最终提高信息检索和机器学习算法的精确度。LSA 主要包括以下这些步骤。

第一步,分析文档集合,建立表示文档和词条关系的矩阵。

第二步,对文档 - 词条矩阵进行 SVD 奇异值分解。在 LSA 的应用场景下,分解之后所得到的奇异值σ对应了一个语义上的“概念”,而 σ 值的大小表示这个概念在整个文档集合中的重要程度。U 中的左奇异值向量表示了每个文档和这些语义“概念”的关系强弱,V 中的右奇异值向量表示每个词条和这些语义“概念”的关系强弱。所以说,SVD 分解把原来的词条 - 文档关系,转换成了词条 - 语义概念 - 文档关系。

画了一张图帮助你理解这个过程。

在这张图中,我们有一个 7×5 维的矩阵 X,表示 7 个文档和 5 个单词。经过 SVD 分解之后,我们得到了两个主要的语义概念,一个概念描述了计算机领域,另一个概念描述了医学领域。矩阵 U 描述文档和这两个概念之间的关系,而矩阵 V’ 描述了各个词语和这两个概念之间的关系。如果要对文档进行检索,我们可以使用 U 这个降维之后的矩阵,找到哪些文档和计算机领域相关。同样,对于聚类算法,我们也可以使用 U 来判断哪些文档属于同一个类。

第三步,对 SVD 分解后的矩阵进行降维,这个操作和 PCA 主成分分析的降维操作是类似的。

第四步,使用降维后的矩阵重新构建概念 - 文档矩阵,新矩阵中的元素不再表示词条是不是出现在文档中,而是表示某个概念是不是出现在文档中。

总的来说,LSA 的分解,不仅可以帮助我们找到词条之间的语义关系,还可以降低向量空间的维度。在这个基础之上再运行其他的信息检索或者机器学习算法,就更加有效。

总结

之前介绍的 PCA 主成分分析,要求矩阵必须是对称的方阵,因此只适用于刻画特征之间关系的协方差矩阵。但是,有的时候我们需要挖掘的是样本和特征之间的关系,例如文档和词条。这个时候矩阵并不是对称的方阵,因此无法直接使用 PCA 分析。

为此,SVD 奇异值分解提供了一种可行的方案。它巧妙地运用了矩阵 X 和自己的转置相乘,生成了两种对称的方阵,并通过这两者的特征分解,获得了 SVD 中的左奇异向量所组成的矩阵 U 和右奇异向量所组成的矩阵 V,并最终推导出奇异值矩阵Σ。这样,SVD 就可以对原始的数据矩阵进行分解,并运用最终的奇异向量进行降维。

我们可以把 SVD 运用在很多场合中,在不同的应用场景下,U,V 和 Σ 代表了不同的含义。例如,在 LSA 分析中,通过对词条和文档矩阵的 SVD 分解,我们可以利用Σ获得代表潜在语义的一些概念。而矩阵 U 表示了这些概念和文档之间的关系,矩阵 V 表示了这些概念和单个词语之间的关系。

思考题

请使用你自己熟悉的语言实现 SVD 分解。(提示:如果使用 Python 等科学计算语言,你可以参考本节所讲述的矩阵分解步骤,也可以使用一些现成的科学计算库。)



SVD奇异值分解是一种重要的降维方法,通过对文档-词条矩阵进行SVD分解,LSA能够发掘词和词之间的语义关系,并过滤掉原始向量空间中的一些“噪音”,提高信息检索和机器学习算法的精确度。SVD奇异值分解巧妙地运用了矩阵X和自己的转置相乘,生成了两种对称的方阵,并通过这两者的特征分解,获得了SVD中的左奇异向量所组成的矩阵U和右奇异向量所组成的矩阵V,并最终推导出奇异值矩阵Σ。这样,SVD就可以对原始的数据矩阵进行分解,并运用最终的奇异向量进行降维。LSA的分解不仅可以帮助我们找到词条之间的语义关系,还可以降低向量空间的维度,从而更有效地运行其他的信息检索或者机器学习算法。 SVD奇异值分解在不同的应用场景下,$U,V$和$Σ$代表了不同的含义。例如,在LSA分析中,通过对词条和文档矩阵的SVD分解,我们可以利用Σ获得代表潜在语义的一些概念。而矩阵$U$表示了这些概念和文档之间的关系,矩阵$V$表示了这些概念和单个词语之间的关系。 SVD奇异值分解是一种强大的工具,对于理解和处理多维数据具有重要意义。 

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值