针对目标检测所用的图像增强方法(代码)

本文介绍了几种用于目标检测任务的图像增强方法,包括旋转、Keras的ImageDataGenerator和imgaug库。这些方法能有效增加数据集的多样性,提高模型的泛化能力。虽然某些方法无法直接生成xml文件,但提供了相应的解决方案。
摘要由CSDN通过智能技术生成

1、目标检测图像数据增强(Data Augmentation)—— 旋转:https://blog.csdn.net/uncle_ll/article/details/83930861(可以同时生成xml文件)

CNN Data Augmentation(数据增强)-旋转:https://blog.csdn.net/u014540717/article/details/53301195(可以同时生成xml文件)

2、针对目标检测的数据增强:https://blog.csdn.net/qq_42277222/article/details/81784504(变换形式多,带标注框旋转,但不能生成xml文件)

3、深度学习数据增强(data_augmentation):Keras ImageDataGenerator:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值