LeetCode 剑指 Offer 10- II. 青蛙跳台阶问题
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
注:取模可以看成取余
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:
0 <= n <= 100
前言
本题与 面试题10- I. 斐波那契数列 等价,唯一的不同在于数字不同(故而直接从动态规划开始):
- 青蛙跳台阶问题: f(0)=1 , f(1)=1 , f(2)=2
- 斐波那契数列问题: f(0)=0 , f(1)=1 , f(2)=1
方法一:动态规划
解决思路:
- 状态定义: 设 dp 为一维数组,其中 dp[i] 的值代表 第 i 个台阶的跳法 。
- 转移方程: dp[i + 1] = dp[i] + dp[i - 1] ,即对应数列定义 f(n + 1) = f(n) + f(n - 1) ;
- 初始状态: dp[0] = 0, dp[1] = 1 ,即初始化前两个数字;
- 返回值: dp[n] ,即n级台阶的总共跳法
代码
class Solution:
def fib(self, n: int) -> int:
a, b = 1, 1 #注意这里初始化的时候b为1,而不为2
for _ in range(n): # _ 是占位符,表示不在意变量的值 只是用于循环遍历n次
a, b = b, a+b #状态转移方程。也相当于,`temp = a + b, a = b, b = temp`
return a % 1000000007
空间的复杂度优化:
- 若新建长度为 n 的dp列表,则空间复杂度为O(N)。由于dp列表第i项只与第 i−1 和第 i−2 项有关,因此只需要初始化三个整形变量 sum, a, b ,利用辅助变量 sum 使 a, b两数字交替前进即可。
- 节省了 dp 列表空间,因此空间复杂度降至 O(1)。
结果and总结
- 运行时间:32ms 内存消耗:13.5MB
方法二:循环求余法
解决思路:
- 求余运算规则:设正整数 x, y, p,求余符号为 ⊙ ,则有 (x+y)⊙p = (x⊙p + y⊙p)⊙p。
- 解析:根据以上规则,可推出 f(n)⊙p = [f(n-1)⊙p + f(n-2)⊙p]⊙p,从而可以在循环过程中每次计算 sum = (a+b) ⊙ 1000000007,此操作与最终返回前取余等价。
代码
class Solution:
def fib(self, n: int) -> int:
a, b, sum = 1, 1, 0
for _ in range(n):
sum = (a + b) % 1000000007
a = b
b = sum
return a
结果and总结
- 运行时间:32ms 内存消耗:13.5MB
- 时间复杂度 O(N):计算f(n)需循环n次,每轮循环内计算操作使用 O(1)
- 空间复杂度 O(1):几个标志变量使用常数大小的额外空间