LeetCode 剑指 Offer 10- II. 青蛙跳台阶问题(动态规划,循环求余)

本文介绍了青蛙跳台阶问题,它与斐波那契数列相似,但起点不同。通过动态规划和循环求余两种方法,我们可以高效地计算出不同台阶的跳法。动态规划法优化了空间复杂度,而循环求余法则在计算过程中进行了取模操作。两种方法的时间复杂度均为O(N),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

LeetCode 剑指 Offer 10- II. 青蛙跳台阶问题

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
注:取模可以看成取余

示例 1:

输入:n = 2
输出:2

示例 2:

输入:n = 7
输出:21

示例 3:

输入:n = 0
输出:1

提示:

0 <= n <= 100

 

前言
本题与 面试题10- I. 斐波那契数列 等价,唯一的不同在于数字不同(故而直接从动态规划开始):

  • 青蛙跳台阶问题: f(0)=1 , f(1)=1 , f(2)=2
  • 斐波那契数列问题: f(0)=0 , f(1)=1 , f(2)=1

方法一:动态规划

解决思路:

  • 状态定义: 设 dp 为一维数组,其中 dp[i] 的值代表 第 i 个台阶的跳法 。
  • 转移方程: dp[i + 1] = dp[i] + dp[i - 1] ,即对应数列定义 f(n + 1) = f(n) + f(n - 1) ;
  • 初始状态: dp[0] = 0, dp[1] = 1 ,即初始化前两个数字;
  • 返回值: dp[n] ,即n级台阶的总共跳法

代码

class Solution:
    def fib(self, n: int) -> int:
        a, b = 1, 1                  #注意这里初始化的时候b为1,而不为2
        for _ in range(n):           # _ 是占位符,表示不在意变量的值 只是用于循环遍历n次
            a, b = b, a+b            #状态转移方程。也相当于,`temp = a + b, a = b, b = temp`
        return a % 1000000007

空间的复杂度优化:

  • 若新建长度为 n 的dp列表,则空间复杂度为O(N)。由于dp列表第i项只与第 i−1 和第 i−2 项有关,因此只需要初始化三个整形变量 sum, a, b ,利用辅助变量 sum 使 a, b两数字交替前进即可。
  • 节省了 dp 列表空间,因此空间复杂度降至 O(1)。

结果and总结

  • 运行时间:32ms      内存消耗:13.5MB

 
 

方法二:循环求余法

解决思路:

  • 求余运算规则:设正整数 x, y, p,求余符号为 ⊙ ,则有 (x+y)⊙p = (x⊙p + y⊙p)⊙p。
  • 解析:根据以上规则,可推出 f(n)⊙p = [f(n-1)⊙p + f(n-2)⊙p]⊙p,从而可以在循环过程中每次计算 sum = (a+b) ⊙ 1000000007,此操作与最终返回前取余等价。

代码

class Solution:
    def fib(self, n: int) -> int:
        a, b, sum = 1, 1, 0
        for _ in range(n):
            sum = (a + b) % 1000000007
            a = b
            b = sum
        return a

结果and总结

  • 运行时间:32ms      内存消耗:13.5MB
  • 时间复杂度 O(N):计算f(n)需循环n次,每轮循环内计算操作使用 O(1)
  • 空间复杂度 O(1):几个标志变量使用常数大小的额外空间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值