基于机器学习的页岩气井产量评价与预测

该研究结合地质、钻井、压裂和生产数据,通过缺失值处理、相关性分析、主成分分析和聚类,利用随机森林模型对页岩气井产量进行预测。结果显示,压裂因素影响最大,模型预测准确度超90%,为页岩气井产量预测提供了一种有效方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、论文摘要

目的:对页岩气井产量进行评价与预测

方法:

  1. 考虑地址因素和工程因素,整合页岩气开采全周期地质、钻井、压裂、生产等数据。
  2. 对原始数据进行缺失值插补、相关性分析、异常值处理、主成分分析,减小数据噪声。
  3. 采用聚类分析方法对页岩气井产量进行评价,研究影响页岩气井产量的主要因素。
  4. 最后采用随机森林方法预测页岩气藏气井产量。

结果:
压裂因素对页岩气井产量评价结果影响最大,调参后的页岩气井产量预测结果准确度达到90%以上。

意义:
现有解析模型与实际页岩气井差异较大,数值模拟计算难度大、效率低,导致页岩气井产量预测难度大。基于机器学习的模型能够用于页岩气井预测。


二、论文结果图

数据样本的所有特征参数
表 1

特征参数的相关性分析
图 2

剔除与目标值相关性低的特征参数后,保留的备选因素
表 2

异常值筛选
表 3

对筛选出的15个特征参数进行主成分分析后,降维得到5个特征值大于1的变量
表 4

利用k均值聚类法,对降维后的5个特征值进行分析,得到Y1对页岩气井产量评价的影响最大
表 5

模型参数
表 6
在这里插入图片描述


三、总结

文章脉络

1
2
3
4
5
页岩气井产量预测
考虑模型因素
处理数据样本缺失值
相关性分析
主成分析进行降维
采用聚类分析进行评价
应用随机森林进行产量预测
### 使用机器学习方法研究页岩气压裂停泵压力及反演裂缝形态 #### 数据收集预处理 为了有效应用机器学习模型于页岩气的研究,数据的质量至关重要。通常需要从多个来源获取地质参数、工程操作记录以及其他相关变量的数据集。这些原始数据可能包含噪声或缺失值,在建模之前应当进行清理和标准化处理[^1]。 #### 特征选择构建 特征的选择直接影响到最终预测效果的好坏。对于页岩气而言,重要的输入特征可以包括但不限于:岩石物理性质(如杨氏模量)、流体特性(粘度)、施工条件(注入速率)等。通过领域专家的知识指导或是利用自动化的算法工具来进行有效的特征提取工作能够显著提升模型性能[^2]。 #### 建立回归模型用于预测停泵压力 针对停泵后的瞬态响应过程建立合适的数学表达式,并以此为基础训练监督式的回归分析器。常见的做法是采用支持向量机(SVM)[^3] 或者随机森林(Random Forests)这样的非线性估计技术来捕捉复杂的映射关系;同时也可以考虑引入深度神经网络架构以适应更广泛的应用场景需求。 ```python from sklearn.svm import SVR import numpy as np # 训练样本X, y分别为自变量矩阵(各影响因素组合),因变量向量(实际测量得到的压力序列) model = SVR(kernel='rbf', C=1e3, gamma=0.1) model.fit(X_train, y_train) predicted_pressures = model.predict(X_test) ``` #### 裂缝几何形状的逆向求解 基于已知的历史生产资料以及上述所获得的最佳拟合曲线作为先验信息源之一,借助贝叶斯优化框架下的高斯过程(Gaussian Process),实现对地下结构变化趋势的有效追踪并推断出最有可能存在的断裂模式及其空间分布情况[^4]。 ```matlab % MATLAB代码片段展示Gaussian Process Regression应用于裂缝形态重建的过程 gprMdl = fitrgp(predictorVariables,responseVariable,'KernelFunction','ardsquaredexponential',... 'Standardize',true); ypred = predict(gprMdl,predictorTestSet); ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值