如何优化Deep Learning?

什么是优化?

optimization 要做些什么?

• Find a 𝜃 to get the lowest Σ𝑥 𝐿(𝜃; 𝑥) !!
• Or, Find a 𝜃 to get the lowest 𝐿(𝜃) !!
符号说明

image-20210706171135637

mt + 1 : 动量

L(θt;x t) : 表示y 和 y^ 之间的差距

On-line vs Off-line

image-20210706172134424

image-20210706172304663

SGD

从θ0 开始,计算其gradient ,然后往反方向走一格

image-20210418080251027

SGDM

image-20210706203120087

image-20210418092915533

image-20210418080331336

Adagrad

当前几个值很大,可能会暴走,加上分母后真好克服这个问题

如果过去的gradient 很大,加上分母后,learning rate就走小步一点(绿色)避免你一下走过了。

同理在gradient 比较小的地方(蓝色比较平的地方),就走大步一点

image-20210418080346740

RMSProp

跟Adagrad 的差别是分母不一样。

确保这个vt不会永无止境的变大。

image-20210418080401869

Adam

image-20210418080416402

image-20210418101214557

Adam need warm-up

image-20210418102857212

image-20210418102923891

image-20210421171728829

NAG

看到未来 超前部署

image-20210421173626788

image-20210421174012395

image-20210421174450164

image-20210421174524735

image-20210421174551410

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

与 或

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值