python:共轭梯度法,特征值聚堆情况下迭代次数讨论

共轭梯度法,特征值聚堆情况下迭代次数讨论

输入各种特征值聚堆与分散时的矩阵,并应用共轭梯度法,观察迭代次数与聚堆情况的关系。
解线性方程组

  • 因为对角矩阵的对角线元素为其特征值,则用对角矩阵讨论较为方便
    代码
import numpy as np

def cg(x0, A, b):
    r0 = np.dot(A, x0) - b
    p0 = -r0
    rk = r0
    pk = p0
    xk = x0
    t = 0 #记录迭代次数
    while np.linalg.norm(rk) >= 1e-6:
        rr = np.dot(rk.T, rk)
        ak = rr / np.dot(np.dot(pk.T, A), pk)
        xk = xk + ak * pk
        rk = rk + ak * np.dot(A, pk)
        bk = np.dot(rk.T, rk) / rr
        pk = -rk + bk * pk
        t += 1
    return xk, t

#输入列表,生成以列表为对角元素的对角矩阵
def Diagonal_matrix(D):
    n = len(D)
    diag = np.zeros((n,n))
    for i in range(n):
        diag[i][i] = D[i]
    return diag
#矩阵对角线元素
D_1 = [1, 1, 1, 1, 1, 6, 7, 8, 9, 10]
D_2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
D_3 = [0.8, 0.9, 1, 1.1, 1.2, 6, 7, 8, 9, 10]
D_4 = [1 - 2*1e-7, 1 - 1e-7, 1, 1 + 1e-7, 1 + 2*1e-7, 6, 7, 8, 9, 10]
D_5 = [1, 1, 1, 2, 2, 2, 3, 3, 3, 10]
#初始值
x0 = np.zeros((10,1))
b = np.ones((10,1))     
#生成对角矩阵
diag1 = Diagonal_matrix(D_1)
diag2 = Diagonal_matrix(D_2)
diag3 = Diagonal_matrix(D_3)
diag4 = Diagonal_matrix(D_4)
diag5 = Diagonal_matrix(D_5)
#共轭梯度法迭代
x_1, n_1 = cg(x0, diag1, b)
x_2, n_2 = cg(x0, diag2, b)
x_3, n_3 = cg(x0, diag3, b)
x_4, n_4 = cg(x0, diag4, b)
x_5, n_5 = cg(x0, diag5, b)
n = [n_1, n_2, n_3, n_4, n_5]
#输出
for i in range(5):
     print('矩阵',i + 1 ,'的迭代次数为: ', n[i])

在这里插入图片描述

  • 矩阵1,前5个元素聚堆且都为相同元素
    在这里插入图片描述
  • 矩阵2,特征值分散
    在这里插入图片描述
  • 矩阵3,前5个特征值聚堆,但是最大差为0.4 ,而cg法精度为1e-6
    在这里插入图片描述
  • 矩阵4,前5个特征值聚堆,且相差最大小于1e-6
    在这里插入图片描述
  • 矩阵5,三聚堆
    输出:
    在这里插入图片描述
    分析:
  • 聚堆特征值可看作一个特征值
  • 特征值差小于迭代精度时被看作聚堆
  • 例如矩阵5,前三个对角元素看作一个,4-6元素看作一个,7-9看作一个 一共4个元素,则需要迭代4次
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>