基于OpenCV3实现人脸识别(原理篇)---PCA(Principal Component Analysis)

本文介绍了PCA(主成分分析)在人脸识别中的应用,特别是特征脸算法EigenFaces。PCA是一种常用的数据降维方法,通过线性变换将高维图像数据降低到较低维度,同时尽可能保留关键信息。在人脸识别中,PCA可以将人脸图像向量化并降低维数,提高识别效率。文章详细阐述了PCA的数学原理,包括向量表示、基变换、协方差矩阵和特征值分解等,最后讨论了PCA在人脸图像处理中的步骤和局限性。
摘要由CSDN通过智能技术生成

实践总结:

  •   1首先了解做人脸识别的步骤
  •   2各个算法后面的原理
  •   3原理背后的相关知识的了解
  •   4人脸识别项目总遇到的问题

                                                                                       正文           

  首先说关于人脸识别,用到的是OpenCV人脸识别类:FaceRecognizer ,主要包括是三个算法:Eigenfaces(特征脸),Fisherfaces 和局部二进制模式直方图 (LBPH) 。那么这些算法背后是什么呢?

我使用的是特征脸,所以看的是它算法的原理。特征脸已经可以达到97%的识别率,所以你使用其他方法很难得到更好的提升了。

      人脸识别是机器学习和机器视觉领域非常重要的一个研究方向,而特征脸算法是人脸识别里非常经典的一个算法,EigenFaces 是基于PCA (principal component analysis) 即主分量分析的

      首先简单说一下PCA变换原理。在人脸识别过程中,一般把图片看成是向量进行处理,高等数学中我们接触的一般都是二维或三维向量,向量的维数是根据组成向量的变量个数来定的,例如就是一个二维向量,因为其有两个参量。而在将一幅图像抽象为一个向量的过程中,我们把图像的每个像素定为一维,对于一幅的普通图像来说,最后抽象为一个维的高维向量,如此庞大的维数对于后续图像计算式来说相当困难,因此有必要在尽可能不丢失重要信息的前提下降低图像维数,PCA就是降低图像维数的一种方法。图像在经过PCA变换之后,可以保留任意数量的对图像特征贡献较大的维数分量,也就是你可以选择降维到30维或者90维或者其他,当然最后保留的维数越多,图像丢失的信息越少,但计算越复杂。

                  下面转至知乎:很好很好,我看了,真的很容易明白! 

      PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。

当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导。希望读者在看完这篇文章后能更好的明白PCA的工作原理。

1. 数据的向量表示及降维问题

一般情况下,在数据挖掘和机器学习中,数据被表示为向量。例如某个淘宝店2012年全年的流量及交易情况可以看成一组记录的集合,其中每一天的数据是一条记录,格式如下:

(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额)

其中“日期”是一个记录标志而非度量值,而数据挖掘关心的大多是度量值,因此如果我们忽略日期这个字段后,我们得到一组记录,每条记录可以被表示为一个五维向量,其中一条看起来大约是这个样子:

(500,240,25,13,2312.15)^\mathsf{T}

注意这里我用了转置,因为习惯上使用列向量表示一条记录(后面会看到原因),本文后面也会遵循这个准则。不过为了方便有时我会省略转置符号,但我们说到向量默认都是指列向量。

我们当然可以对这一组五维向量进行分析和挖掘,不过我们知道,很多机器学习算法的复杂度和数据的维数有着密切关系,甚至与维数呈指数级关联。当然,这里区区五维的数据,也许还无所谓,但是实际机器学习中处理成千上万甚至几十万维的情况也并不罕见,在这种情况下,机器学习的资源消耗是不可接受的,因此我们必须对数据进行降维。

降维当然意味着信息的丢失,不过鉴于实际数据本身常常存在的相关性,我们可以想办法在降维的同时将信息的损失尽量降低。

举个例子,假如某学籍数据有两列M和F,其中M列的取值是如何此学生为男性取值1,为女性取值0;而F列是学生为女性取值1,男性取值0。此时如果我们统计全部学籍数据,会发现对于任何一条记录来说,当M为1时F必定为0,反之当M为0时F必定为1。在这种情况下,我们将M或F去掉实际上没有任何信息的损失,因为只要保留一列就可以完全还原另一列。

当然上面是一个极端的情况,在现实中也许不会出现,不过类似的情况还是很常见的。例如上面淘宝店铺的数据,从经验我们可以知道,“浏览量”和“访客数”往往具有较强的相关关系,而“下单数”和“成交数”也具有较强的相关关系。这里我们非正式的使用“相关关系”这个词,可以直观理解为“当某一天这个店铺的浏览量较高(或较低)时,我们应该很大程度上认为这天的访客数也较高(或较低)”。后面的章节中我们会给出相关性的严格数学定义。

这种情况表明,如果我们删除浏览量或访客数其中一个指标,我们应该期待并不会丢失太多信息。因此我们可以删除一个,以降低机器学习算法的复杂度。

上面给出的是降维的朴素思想描述,可以有助于直观理解降维的动机和可行性,但并不具有操作指导意义。例如,我们到底删除哪一列损失的信息才最小?亦或根本不是单纯删除几列,而是通过某些变换将原始数据变为更少的列但又使得丢失的信息最小?到底如何度量丢失信息的多少?如何根据原始数据决定具体的降维操作步骤?

要回答上面的问题,就要对降维问题进行数学化和形式化的讨论。而PCA是一种具有严格数学基础并且已被广泛采用的降维方法。下面我不会直接描述PCA,而是通过逐步分析问题,让我们一起重新“发明”一遍PCA。

2. 向量的表示及基变换

既然我们面对的数据被抽象为一组向量,那么下面有必要研究一些向量的数学性质。而这些数学性质将成为后续导出PCA的理论基础。

3. 内积与投影

下面先来看一个高中就学过的向量运算:内积。两个维数相同的向量的内积被定义为:

(a_1,a_2,\cdots,a_n)^\mathsf{T}\cdot (b_1,b_2,\cdots,b_n)^\mathsf{T}=a_1b_1+a_2b_2+\cdots+a_nb_n

内积运算将两个向量映射为一个实数。其计算方式非常容易理解,但是其意义并不明显。下面我们分析内积的几何意义。假设AB是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设AB均为二维向量,则A=(x_1,y_1)B=(x_2,y_2)。则在二维平面上AB可以用两条发自原点的有向线段表示,见下图:

好,现在我们从A点向B所在直线引一条垂线。我们知道垂线与B的交点叫做AB上的投影,再设AB的夹角是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值