集成模型对比:RF,adaboost,gbdt,xgboost
1.与LightGBM相比,xgboost明显的不足:
1)xgBoosting采用预排序,在迭代之前,对结点的特征做预排序,遍历选择最优分割点,数据量大时,贪心法耗时,LightGBM方法采用histogram算法,占用的内存低,数据分割的复杂度更低;
2)xgBoosting采用level-wise生成决策树,同时分裂同一层的叶子,从而进行多线程优化,不容易过拟合,但很多叶子节点的分裂增益较低,没必要进行跟进一步的分裂,这就带来了不必要的开销;LightGBM采用深度优化,leaf-wise生长策略,每次从当前叶子中选择增益最大的结点进行分裂,循环迭代,但会生长出更深的决策树,产生过拟合,因此引入了一个阈值进行限制,防止过拟合.
2.Adaboost和GBDT的异同点
1)关注点:分错权值,残差
Adaboost每轮学习的一个基本学习器是通过改变样本的权值,关注上轮分类错误的样本的权值,以逐步减少在训练集上的分类误差率。而GBDT每轮学习一个基本学习器是通过改变输出值,每轮拟合的值为真实值与已有的加法模型的差值(即残差)。
2)异常点:adaboost存在异常点敏感的问题

本文对比了RF、adaboost、gbdt和xgboost等树模型,探讨了它们的训练效率、过拟合风险、异常值敏感度等特性。xgboost预排序耗时且可能产生不必要的开销,LightGBM则优化了这些。Adaboost侧重改变误分类样本权重,GBDT关注残差。RF与GBDT虽都是多棵树,但RF基于bagging并行生成,对异常值不敏感,而GBDT是boosting串行生成,对异常值敏感。在过拟合方面,RF较易发生,GBDT较难。最后,AdaBoost对异常值敏感,k-means同样如此。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



