点支配集、点覆盖集、点独立集

1、支配与支配集:设无向图为 G(V, E),顶点集合 V*⊆V,若对于∀v∈(V–V*),∃u∈V*,使得(u, v)∈E,则称 u 支配 v,并称 V*为 G 的一个点支配集(简称支配集)。

     通俗地讲,所谓点支配集,就是 V*中的顶点能“支配”V–V*中的每个顶点,即 V–V*中的每个顶点都是 V*中某个顶点的邻接顶点,或者说 V 中的顶点要么是 V*集合中的元素、要么与 V*中的一个顶点相邻。

2、极小支配集:若支配集 V*的任何真子集都不是支配集,则称 V*是极小支配集。
3、最小支配集:顶点数最少的支配集称为最小支配集。

4、点覆盖集(vertex covering set):设无向图为 G(V, E),顶点集合 V*⊆V,若对于∀e∈E,∃v∈V*,使得 v 与 e 相关联,则称 v 覆盖 e,并称 V*为 G 的一个点覆盖集或简称点覆盖。

    通俗地讲,所谓点覆盖集 V*,就是 G 中所有的边至少有一个顶点属于 V*。

5、极小点覆盖:若点覆盖 V*的任何真子集都不是点覆盖, 则称 V*是极小点覆盖。

6、最小点覆盖:顶点个数最少的点覆盖称为最小点覆盖。

7、点独立集(vertex independent set):设无向图为 G(V, E),顶点集合 V*⊆V,若 V*中任何两个顶点均不相邻,则称 V*为 G 的点独立集,或简称独立集

8、极大点独立集:若在 V*中加入任何顶点都不再是独立集,则称 V*为极大点独立集。

9、最大点独立集:顶点数最多的点独立集称为最大点独立集。

10、定理1: 设无向图 G(V, E)中无孤立顶点,则 G 的极大点独立集都是 G 的极小支配集。逆命题不成立(即,极小支配集未必是极大独立集)

11、定理2: 一个独立集是极大独立集,当且仅当它是一个支配集。

12、定理3:设无向图 G(V, E)中无孤立顶点,顶点集合 V*⊆V,则 V*是 G 的点覆盖,当且仅当 V–V*是 G 的点独立集。

13、推论:设 G 是 n 阶无孤立点的图,则 V*是 G 的极小(最小)点覆盖集,当且仅当 V–V*是 G 的极大(最大)点独立集,从而有:α0 +β0 = n (n 为顶点个数)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值