双线性插值的Python实现(采用矩阵运算,无for循环)

本文介绍了如何利用numpy库的矩阵运算来高效地实现双线性插值,避免了传统的三重for循环方式,适用于图像处理中的批处理操作。内容包括双线性插值原理的引用,代码实现细节,以及最终用狗子照片进行的测试验证,结果显示放大和缩小都得到了正确结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近写深度学习网络需要对feature map进行双线性插值,opencv的resize不能对图像进行批处理,网上找到的双线性插值的代码基本都是三重for循环实现的,效率太低下,干脆自己用numpy库的矩阵运算实现了一个。

双线性插值原理参考:

https://zhuanlan.zhihu.com/p/112030273

感谢大佬Orz。

本文知乎同款:https://zhuanlan.zhihu.com/p/266845896

import numpy as np

def bilinear_interpolate(source, scale=2, pad=0.5):
	sour_shape = source.shape
	(sh, sw) = (sour_shape[-2], sour_shape[-1])
	padding = pad*np.ones((sour_shape[0], sour_shape[1], sh+1, sw+1))
	padding[:,:,:-1,:-1] = source

	(th, tw) = (round(scale*sh), round(scale*sw))

	grid = np.array(np.meshgrid(np.arange(th), np.arange(tw)), dtype=np.float32)
	xy = np.copy(grid)
	xy[0] *= sh/th
	xy[1] *= sw/tw
	x = xy[0].flatten()
	y = xy[1].flatten()

	c
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值