1049. 最后一块石头的重量 II

这篇博客介绍了如何将问题转化为0-1背包问题,通过动态规划求解在给定石头重量列表中找到使得两部分石头尽可能均衡的方案,以达到最后一块石头重量最小的目标。算法涉及到了数组处理、动态规划状态转移和最大值计算。
摘要由CSDN通过智能技术生成

1049. 最后一块石头的重量 II

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;

        for(int i = 0;i < stones.length;i++){
            sum += stones[i];
        }
        int target = sum / 2;
        int[][] dp = new int[stones.length + 1][target + 1];

        for(int i = 1; i <= stones.length;i++){
            int x = stones[i - 1];
            for(int j = 0; j <= target;j++){
                dp[i][j] = dp[i - 1][j];
                if(j >= x) dp[i][j] = Math.max(dp[i][j],dp[i - 1][j - x] + x);
            }
        }

        int res = sum - 2*dp[stones.length][target];
        return res;

    }
}
class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;

        for(int i = 0;i < stones.length;i++){
            sum += stones[i];
        }
        int target = sum / 2;
        int[] dp = new int[target + 1];

        for(int i = 1; i <= stones.length;i++){
            int x = stones[i - 1];
            for(int j = target; j >= x;j--){
                dp[j] = Math.max(dp[j],dp[j - x] + x);
            }
        }

        int res = sum - 2*dp[target];
        return res;

    }
}

思路还是可以转变为0-1背包问题,重量一半的情况下,能装下的最大值,使左右两边的石头尽量均衡,这样可以达到碰撞后重量最小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值