基于EMD和LSTM的风速预测算法及其Matlab实现
近年来,随着能源需求的不断增长,风电作为一种清洁、可再生的能源方式,得到了广泛的应用和研究。然而,由于风速的高度非线性、时变性质,精确地预测风速一直是风电领域的一个重要研究方向。在这篇文章中,我们将介绍一种基于经验模态分解(Empirical Mode Decomposition,简称EMD)和长短时记忆网络(Long Short-Term Memory,简称LSTM)结合的风速预测算法,并给出相应的Matlab代码实现。
- 风速数据预处理
首先,我们需要对原始的风速数据进行预处理,包括数据清洗、异常值检测与处理等步骤。在本文中,我们使用了一个公开的风速数据集,其中包括了某个风电场从2010年1月到2011年12月每10分钟采集的风速数据。我们将其中的前80%作为训练集,剩下的20%作为测试集。
- EMD分解
EMD是一种将非线性和非平稳信号分解成若干个固有模态函数(Intrinsic Mode Functions,简称IMFs)的方法。在本文中,我们将风速数据分解成了三个IMFs和一个残差项,如图1所示。
- LSTM模型建立
LSTM是一种特殊的循环神经网络(Recurre