基于EMD和LSTM的风速预测算法及其Matlab实现

273 篇文章 55 订阅 ¥99.90 ¥299.90
273 篇文章 5 订阅 ¥99.90 ¥299.90
219 篇文章 53 订阅 ¥99.90 ¥299.90
该文章介绍了使用经验模态分解(EMD)和长短时记忆网络(LSTM)预测风速的方法。通过EMD将非线性风速数据分解,然后利用LSTM进行预测。在Matlab中实现LSTM模型,并对预测效果进行了评估。
摘要由CSDN通过智能技术生成

基于EMD和LSTM的风速预测算法及其Matlab实现

近年来,随着能源需求的不断增长,风电作为一种清洁、可再生的能源方式,得到了广泛的应用和研究。然而,由于风速的高度非线性、时变性质,精确地预测风速一直是风电领域的一个重要研究方向。在这篇文章中,我们将介绍一种基于经验模态分解(Empirical Mode Decomposition,简称EMD)和长短时记忆网络(Long Short-Term Memory,简称LSTM)结合的风速预测算法,并给出相应的Matlab代码实现。

  1. 风速数据预处理

首先,我们需要对原始的风速数据进行预处理,包括数据清洗、异常值检测与处理等步骤。在本文中,我们使用了一个公开的风速数据集,其中包括了某个风电场从2010年1月到2011年12月每10分钟采集的风速数据。我们将其中的前80%作为训练集,剩下的20%作为测试集。

  1. EMD分解

EMD是一种将非线性和非平稳信号分解成若干个固有模态函数(Intrinsic Mode Functions,简称IMFs)的方法。在本文中,我们将风速数据分解成了三个IMFs和一个残差项,如图1所示。

  1. LSTM模型建立

LSTM是一种特殊的循环神经网络(Recurre

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码编织匠人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值