TensorFlow搭建CNN实现时间序列预测(风速预测)


时间序列预测系列文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测
  4. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  5. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  7. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  8. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  9. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  10. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  11. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
  12. PyTorch-LSTM时间序列预测中如何预测真正的未来值
  13. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  14. PyTorch搭建ANN实现时间序列预测(风速预测)
  15. PyTorch搭建CNN实现时间序列预测(风速预测)
  16. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  17. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
  18. PyTorch时间序列预测系列文章总结(代码使用方法)
  19. TensorFlow搭建LSTM实现时间序列预测(负荷预测)
  20. TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
  21. TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
  22. TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  23. TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  24. TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  25. TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  26. TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  27. TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  28. TensorFlow搭建ANN实现时间序列预测(风速预测)
  29. TensorFlow搭建CNN实现时间序列预测(风速预测)
  30. TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  31. PyG搭建图神经网络实现多变量输入多变量输出时间序列预测
  32. PyTorch搭建GNN-LSTM和LSTM-GNN模型实现多变量输入多变量输出时间序列预测
  33. PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测
  34. 时序预测中Attention机制是否真的有效?盘点LSTM/RNN中24种Attention机制+效果对比
  35. 详解Transformer在时序预测中的Encoder和Decoder过程:以负荷预测为例
  36. (PyTorch)TCN和RNN/LSTM/GRU结合实现时间序列预测
  37. PyTorch搭建Informer实现长序列时间序列预测
  38. PyTorch搭建Autoformer实现长序列时间序列预测
  39. PyTorch搭建GNN(GCN、GraphSAGE和GAT)实现多节点、单节点内多变量输入多变量输出时空预测

I. 数据集

在这里插入图片描述
数据集为Barcelona某段时间内的气象数据,其中包括温度、湿度以及风速等。本文将利用CNN来对风速进行预测。

II. 特征构造

对于风速的预测,除了考虑历史风速数据外,还应该充分考虑其余气象因素的影响。因此,我们根据前24个时刻的风速+其余气象数据来预测下一时刻的风速。

III. 一维卷积

我们比较熟悉的是CNN处理图像数据时的二维卷积,此时的卷积是一种局部操作,通过一定大小的卷积核作用于局部图像区域获取图像的局部信息。图像中不同数据窗口的数据和卷积核做inner product(内积)的操作叫做卷积,其本质是提纯,即提取图像不同频段的特征。

上面这段话不是很好理解,我们举一个简单例子:
在这里插入图片描述
假设最左边的是一个输入图片的某一个通道,为 5 × 5 5 \times5 5×5,中间为一个卷积核的一层, 3 × 3 3 \times3 3×3,我们让卷积核的左上与输入的左上对齐,然后整个卷积核可以往右或者往下移动,假设每次移动一个小方格,那么卷积核实际上走过了一个 3 × 3 3 \times3 3×3的面积,那么具体怎么卷积?比如一开始位于左上角,输入对应为(1, 1, 1;-1, 0, -3;2, 1, 1),而卷积层一直为(1, 0, 0;0, 0, 0;0, 0, -1),让二者做内积运算,即1 * 1+(-1 * 1)= 0,这个0便是结果矩阵的左上角。当卷积核扫过图中阴影部分时,相应的内积为-1,如上图所示。

因此,二维卷积是将一个特征图在width和height两个方向上进行滑动窗口操作,对应位置进行相乘求和。

相比之下,一维卷积通常用于时序预测,一维卷积则只是在width或者height方向上进行滑动窗口并相乘求和。 如下图所示:
在这里插入图片描述
原始时序数为:(1, 20, 15, 3, 18, 12. 4, 17),维度为8。卷积核的维度为5,卷积核为:(1, 3, 10, 3, 1)。那么将卷积核作用与上述原始数据后,数据的维度将变为:8-5+1=4。即卷积核中的五个数先和原始数据中前五个数据做卷积,然后移动,和第二个到第六个数据做卷积,以此类推。

IV. 数据处理

1. 数据预处理

数据预处理阶段,主要将某些列上的文本数据转为数值型数据,同时对原始数据进行归一化处理。文本数据如下所示:
在这里插入图片描述
经过转换后,上述各个类别分别被赋予不同的数值,比如"sky is clear"为0,"few clouds"为1。

def load_data():
    df = pd.read_csv('Barcelona/Barcelona.csv')
    df.drop_duplicates(subset=[df.columns[0]], inplace=True)
    df.drop([df.columns[0], df.columns[1]], axis=1, inplace=True)
    # weather_main
    listType = df['weather_main'].unique()
    df.fillna(method='ffill', inplace=True)
    dic = dict.fromkeys(listType)
    for i in range(len(listType)):
        dic[listType[i]] = i
    df['weather_main'] = df['weather_main'].map(dic)
    # weather_description
    listType = df['weather_description'].unique()
    dic = dict.fromkeys(listType)
    for i in range(len(listType)):
        dic[listType[i]] = i
    df['weather_description'] = df['weather_description'].map(dic)
    # weather_icon
    listType = df['weather_icon'].unique()
    dic = dict.fromkeys(listType)
    for i in range(len(listType)):
        dic[listType[i]] = i
    df['weather_icon'] = df['weather_icon'].map(dic)
    # print(df)
    return df

2. 数据集构造

利用前24个小时的风速+其他变量来预测下一时刻的风速:

数据被划分为三部分:Dtr、Val以及Dte,Dtr用作训练集,Val用作验证集,Dte用作测试集,模型训练返回的是验证集上表现最优的模型。

V. CNN模型

1. 模型搭建

CNN模型搭建如下:

class CNN(keras.Model):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = Sequential()
        self.conv1.add(layers.Conv1D(64, 2, activation='relu'))
        self.conv1.add(layers.MaxPool1D(pool_size=2, strides=1))

        self.conv2 = Sequential()
        self.conv2.add(layers.Conv1D(128, 2, activation='relu'))
        self.conv2.add(layers.MaxPool1D(pool_size=2, strides=1))
        self.Linear1 = layers.Dense(B * 50, activation='relu')
        self.Linear2 = layers.Dense(1)

    def call(self, x):
        x = self.conv1(x)   # (15, 24, 15)--->(15, 22, 64)
        # print(x.shape)
        x = self.conv2(x)   # (15, 22, 64)--->(15, 20, 128)
        x = tf.reshape(x, [x.shape[0], -1])
        x = self.Linear1(x)
        x = self.Linear2(x)

        return x

卷积层定义如下:

layers.Conv1D(64, 2, activation='relu')
layers.Conv1D(128, 2, activation='relu')

一维卷积的原始定义为:

tf.keras.layers.Conv1D(
    filters, kernel_size, strides=1, padding='valid',
    data_format='channels_last', dilation_rate=1, groups=1,
    activation=None, use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer='zeros', kernel_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
    bias_constraint=None, **kwargs
)

这里filters的概念相当于自然语言处理中的embedding,这里输入通道数为15,表示风速+14个环境变量,输出filters设置为64,卷积核大小为2。

原数数据的维度为24,即前24小时的风速+14种气象数据。卷积核大小为2,根据前文公式,原始时序数据经过卷积后维度为:

24 - 2 + 1 = 23

然后经过一个最大池化变成22,然后又是一个卷积层+池化层,变成20。

这里需要注意的是,PyTorch中要求输入数据的shape为(batch_size, input_size, seq_len),而TensorFlow中为(batch_size, seq_len, input_size),也就是说TensorFlow中不需要对原始数据进行维度交换操作。

2. 模型训练及表现

CNN在Dte上的表现如下表所示:

MAERMSE
1.061.41

VI. 源码及数据

后面将陆续公开~

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值