Keras笔记-损失函数的使用

本文介绍了Keras中损失函数的使用,包括损失函数的作用、参数以及常见的损失函数类型,如mean_squared_error、mean_absolute_error等。同时强调了在使用categorical_crossentropy时,目标值应为分类格式。
摘要由CSDN通过智能技术生成

Keras中文文档:https://keras.io/zh/losses/

1.损失函数的使用

损失函数(或称目标函数、优化评分函数)是编译模型时所需的两个参数之一:

model.compile(loss='mean_squared_error', optimizer='sgd')
from keras import losses

model.compile(loss=losses.mean_squared_error, optimizer='sgd')

你可以传递一个现有的损失函数名,或者一个 TensorFlow/Theano 符号函数。 该符号函数为每个数据点返回一个标量,有以下两个参数:

  • y_true: 真实标签。TensorFlow/Theano 张量。
  • y_pred: 预测值。TensorFlow/Theano 张量,其 shape 与 y_true 相同。

实际的优化目标是所有数据点的输出数组的平均值。

2.可用损失函数

mean_squared_error

mean_squared_error(y_true, y_pred)

mean_absolute_error 

mean_absolute_error(y_true, y_pred)

 mean_absolut

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值