Keras中文文档:https://keras.io/zh/losses/
1.损失函数的使用
损失函数(或称目标函数、优化评分函数)是编译模型时所需的两个参数之一:
model.compile(loss='mean_squared_error', optimizer='sgd')
from keras import losses
model.compile(loss=losses.mean_squared_error, optimizer='sgd')
你可以传递一个现有的损失函数名,或者一个 TensorFlow/Theano 符号函数。 该符号函数为每个数据点返回一个标量,有以下两个参数:
- y_true: 真实标签。TensorFlow/Theano 张量。
- y_pred: 预测值。TensorFlow/Theano 张量,其 shape 与 y_true 相同。
实际的优化目标是所有数据点的输出数组的平均值。
2.可用损失函数
mean_squared_error
mean_squared_error(y_true, y_pred)
mean_absolute_error
mean_absolute_error(y_true, y_pred)
mean_absolut