知识图谱的生命周期

知识图谱 专栏收录该内容
6 篇文章 0 订阅


生命周期

1 知识建模

知识建模是建立知识图谱的数据模式,数据模式是基于选定的数据模型对数据进行“型”方面的刻画,而相应的“实例”则是对数据“值”方面的描述。先有数据模型,才能据其讨论相应数据模式,有了数据模式,就能依据该模式得到相应的实例。

常用方法

  • 自顶向下专家手工编辑形成数据模式
  • 自底向上:基于行业现有的标准进行转换,或从现有的高质量行业数据源(如业务系统数据库表)中进行映射

关键技术与难点

  • 多人在线协同编辑,并且事实更新
  • 能够导入集成使用现有的(结构化)知识
  • 支持大数据量
  • 能够支撑事件、时许等复杂知识表达
  • 可以与自动算法进行结合,避免全人工操作

2 知识抽取

从不同来源、不同结构的数据中进行知识提取,形成知识存入到知识图谱。
在这里插入图片描述

关键技术与难点

  • 从结构化数据库中获取知识:D2R
    难点:复杂表数据的处理
  • 从链接数据中获取知识:图映射
    难点:数据对齐
  • 从半结构化(网站)数据中获取知识:使用包装器
    难点: 方便的包装器定义方法,包装器自动生成、更|新与维护
  • 从文本中获取知识:信息抽取
    难点:结果的准确率与覆盖率

3 知识融合

包括数据模式层和数据层的融合。

数据模式层融合

  • 概念合并
  • 概念上下位关系合并
  • 概念的属性定义合并

数据层融合

  • 实体合并
  • 实体属性融合
  • 冲突检测与解决

关键技术与难点

  • 实现不同来源,不同心态数据的融合
  • 海量数据的高效融合
  • 新增知识的实时融合
  • 多语言的融合

4 知识存储

基本数据存储:三元组、事件信息、时态信息、使用知识图谱组织的数据

上层应用需要支持:知识推理、知识快速查询、图实时计算

关键技术与难点

  • 大规模三元组的存储
  • 知识图谱组织的大数据存储
  • 事件与时态信息的存储
  • 快速推理与图计算的支持

5 知识计算

  • 图挖掘计算:基于图论的相关算法,实现对图谱的探索和挖掘
  • 本体推理:使用本体推理进行新知识发现或冲突检测
  • 基于规则的推理:使用规则引擎,编写相应的业务规则,通过推理辅助业务决策

关键技术与难点

  • 图挖掘计算:大规模图算法的效率
  • 本体推理与规则推理:大数据量下的快速推理,对于增量知识和规则的快速加载

6 知识应用

语义搜索:基于知识图谱中的知识,解决传统搜索中遇到的关键字语义多样性及语义消歧的难题;通过实体链接实现知识与文档的混合检索。
智能问答:针对用户输入的自然语言进行理解,从知识图谱中或目标数据中给出用户问题的答案。
可视化决策支持:通过提供统一的图形接口,结合可视化、推理、检索等,为用户提供信息获取的入口。

关键技术与难点

语义搜索:自然语义的表达多样性歧义问题
智能问答
(1)准确的语义解析。
(2)正确理解用户的真实意图。
(3)答案确定与排序。
可视化决策支持
(1)通过可视化方式辅助用户模式快速发现
(2)高效地缩放和导航
(3)大图环境下底层算法(图挖掘算法)的效率

参考资料:王昊奋知识图谱教程

  • 1
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值