运动想象脑机接口方向期刊投稿状态记录

本文记录了三篇学术论文的投稿、审稿过程,包括《控制理论与应用》的多次修改最终被接受,以及《Mathematical Biosciences and Engineering》的快速审稿与接受。《Journal of Neuroscience Methods》初投被拒后,经过重大修订和再次审稿,最终获得接受。文章分享了投稿、审稿和修订的经验,对于学术研究者具有参考价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《控制理论与应用》

1.Submitted 2020.5.21
2.Under review 2020.5.28
3.Major revision 2020.8.4
4.Minor revision 2020.9.10
5.Accept 2020.10.4

《Mathematical Biosciences and Engineering》

1.Submitted 2021.3.21
2. Under review 2021.3.24
3. Editor decision 2021.4.21
4. Major revision 2021.4.23
5. Revised version review 2021.5.1
6. Editor decision 2021.5.7
7.Accept 2021.5.10

《Journal of Neuroscience Methods》

1.Submitted to Journal 2021.1.21
2.With Editor 2021.1.22
3.Under Review 2021.1.24
4.Required Reviews Completed 2021.2.3
5.Decision in Process 2021.2.17
6.Reject 2021.2.21

重投状态记录:
1.Submitted to Journal 2021.3.7
2.With Editor 2021.3.9
3.Under Review 2021.3.10 2021.3.26 2021.4.4 2021.5.9 2021.5.20(状态没变,日期一直在变)
4.Required Reviews Completed 2021.6.2
5.Decision in Process 2021.6.3
6.Major Revision 2021.6.5
7.With Editor 2021.6.19
8.Under Review 2021.6.22
9.Required Reviews Completed 2021.6.30
10.Decision in Process 2021.7.1
11.Accept 2021.7.2

2021/8/17

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值