《环境遥感》(Remote Sensing of Environment,IF=11.1)近日发表一项来自中国科学院空天信息创新研究院王力、牛铮研究员团队的全波形高光谱激光雷达(hyperspectral LiDAR,HSL)数据处理算法研究,论文第一作者为空天院白杰博士。该研究提出了一种多自然目标各波长中心位置降序排列(Ranking Central Locations of Natural Target Echoes, Rclonte)的思想,基于详细的筛选判定原则(见文后研究算法介绍)组建参考中心位置集参与修正其他波长处漏检或误检目标辐射参数。研究发现,Rclonte算法可以很好地检测多自然目标并恢复其原始光谱,大大提高了全波形高光谱激光雷达对目标结构和光谱信息的反演能力,丰富了多/高光谱激光雷达波形数据处理算法库。
高光谱激光雷达回波信号处理是HSL系统各类应用开展前的基础步骤,其处理得到的辐射信息(如峰值强度、中心位置、半高宽FWHM等)精度将直接决定后续定量反演或聚类研究的误差大小,其重要性不言而喻。传统的波形处理技术主要是针对单波长LiDAR系统设计的。由于光谱范围的限制(单一的波长数量),单波长分解结果通常无法捕获沿激光路径的目标的光谱廓线,阻碍了目标反射特性