概率:概率定义为一件事情发生的可能性
如:扔硬币某一面朝上有50%概率
“朴素”贝叶斯:所有特征之间条件独立
朴素贝叶斯-文档分类
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
def naviebayes():
# 准备数据
news = fetch_20newsgroups(subset="all")
print(news.data)
print(news.target)
# 数据分割
x_train,x_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25)
# 对数据集进行特征抽取
tf = TfidfVectorizer()
# 以训练集当中的词的列表进行每篇文章的重要性统计
x_train = tf.fit_transform(x_train)
print(tf.get_feature_names())
x_test = tf.transform(x_test)
# 进行朴素贝叶斯算法的预测
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray())
mlt.fit(x_train,y_train)
y_predict= mlt.predict(x_test)
print("预测的文章类别为:",y_predict)
# 得出准确率
print("准确率:",mlt.score(x_test,y_test))
return None
if __name__=="__main__":
naviebayes()