机器学习-分类算法-朴素贝叶斯算法07

概率:概率定义为一件事情发生的可能性
如:扔硬币某一面朝上有50%概率
“朴素”贝叶斯:所有特征之间条件独立
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
朴素贝叶斯-文档分类
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB



def naviebayes():
    # 准备数据
    news = fetch_20newsgroups(subset="all")
    print(news.data)
    print(news.target)
    # 数据分割
    x_train,x_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25)
    # 对数据集进行特征抽取
    tf = TfidfVectorizer()
    # 以训练集当中的词的列表进行每篇文章的重要性统计
    x_train = tf.fit_transform(x_train)
    print(tf.get_feature_names())
    x_test = tf.transform(x_test)

    # 进行朴素贝叶斯算法的预测
    mlt = MultinomialNB(alpha=1.0)
    print(x_train.toarray())
    mlt.fit(x_train,y_train)
    y_predict= mlt.predict(x_test)
    print("预测的文章类别为:",y_predict)
    # 得出准确率
    print("准确率:",mlt.score(x_test,y_test))

    return None


if __name__=="__main__":
    naviebayes()

在这里插入图片描述
 a
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值