写在最开始:
今天开始复习线性代数, 我将以Linear Algebra Done Right(Sheldon Axler著)这本书为参考, 为大家分享线性代数的相关知识
需要和大家强调的是, 这本书的原书, 即使是英文版也相当值得一读, 不仅写的简洁, 而且排版相当舒服, 英语不好的也只需要查阅数学专业词汇就能看懂
Chapter 1
第一章我们来介绍向量空间
线性代数就是对有限维向量空间线性映射的学问, 在这一章, 我们将对向量空间做出定义, 并且讨论它的基本性质, 再之后我们会提出子空间的概念以及讨论相关性质
1.A R n a n d C n R^n\ and\ C^n Rn and Cn
我们先来提出 R n R^n Rn和 C n C^n Cn的概念, 这是我们定义向量空间的前提
你可能已经对R的概念和性质相当熟悉了, 即实数集, 这里我们不对R的定义和性质作过多展开, 我们只在R的基础上提出C的定义, 即复数集, 下面是正式的定义:
1.1 Definition
一个复数是一个序数对 ( a , b ) (a,b) (a,b), 这里的 a , b ∈ R a,b\in R a,b∈R, 这个复数写作 a + b i a+bi a+bi
需要提前声明的是, 我们对上述 i i i的定义就是 − 1 -1 −1的开根号即 i = − 1 i=\sqrt{-1} i=−1
所有复数的集合被记作 C C C, 且有 C = { a + b i : a , b ∈ R } C=\{a+bi:a,b\in R\} C={a+bi:a,b∈R}
定义于集合 C C C 上的加法和乘法如下: ( a , b , c , d ∈ R ) (a,b,c,d\in R) (a,b,c,d∈R)
- ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a+bi)+(c+di)=(a+c)+(b+d)i (a+bi)+(c+di)=(a+c)+(b+d)i
- ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i (a+bi)(c+di)=(ac-bd)+(ad+bc)i (a+bi)(c+di)=(ac−bd)+(ad+bc)i
符号 i i i于1777年被瑞士数学家Leonhard Euler第一次提出并使用
需要注意的是, 当 a ∈ R a\in R a∈R时, 我们定义 a + 0 i a+0i a+0i为实数 a a a, 因此我们可以把实数集 R R R看作复数集 C C C的子集, 我们也把 0 + b i 0+bi 0+bi写作 b i bi bi, 0 + 1 i 0+1i 0+1i写作 i i i
使用上面定义的复数集乘法, 我们可以轻易证明出 i 2 = − 1 i^2=-1 i2=−1, 在讨论完复数集的特性后我会给出相应证明
这里先直接使用这个定义, 完成下面的例子:
1.2 Example
(
2
+
3
i
)
(
4
+
5
i
)
=
2
⋅
4
+
2
⋅
(
5
i
)
+
(
3
i
)
⋅
4
+
(
3
i
)
(
5
i
)
=
8
+
10
i
+
12
i
−
15
=
−
7
+
22
i
(2+3i)(4+5i)=2\cdot 4+2\cdot (5i) +(3i)\cdot 4+(3i)(5i)\\ =8+10i+12i-15\\ =-7+22i
(2+3i)(4+5i)=2⋅4+2⋅(5i)+(3i)⋅4+(3i)(5i)=8+10i+12i−15=−7+22i
接着我们来讨论复数集的特性:
1.3 Properties
- 交换律:
- α + β = β + α a n d α β = β α ∀ α , β ∈ C \alpha +\beta=\beta +\alpha\ \ \ and\ \ \ \alpha\beta=\beta\alpha\ \ \forall\alpha,\beta\in C α+β=β+α and αβ=βα ∀α,β∈C
- 结合律:
- ( α + β ) + λ = α + ( β + λ ) a n d ( α β ) λ = α ( β λ ) ∀ α , β , λ ∈ C (\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)\ \ \ and\ \ \ (\alpha\beta)\lambda=\alpha(\beta\lambda)\ \ \forall\alpha,\beta,\lambda\in C (α+β)+λ=α+(β+λ) and (αβ)λ=α(βλ) ∀α,β,λ∈C
- 单位元:
- λ + 0 = λ a n d λ 1 = λ ∀ λ ∈ C \lambda+0=\lambda\ \ \ and\ \ \ \lambda1=\lambda\ \ \forall \lambda\in C λ+0=λ and λ1=λ ∀λ∈C
- 加法逆元:
- ∀ α ∈ C , 唯一 ∃ β ∈ C , 有 α + β = 0 \forall\alpha\in C, 唯一\exist \beta\in C, 有\alpha+\beta=0 ∀α∈C,唯一∃β∈C,有α+β=0
- 乘法逆元:
- ∀ α ∈ C , α ≠ 0 , 唯一 ∃ β ∈ C , 有 α β = 1 \forall\alpha\in C,\alpha\neq0, 唯一\exist \beta\in C, 有\alpha\beta=1 ∀α∈C,α=0,唯一∃β∈C,有αβ=1
- 分配律:
- λ ( α + β ) = λ α + λ β , ∀ λ , α , β ∈ C \lambda(\alpha+\beta)=\lambda\alpha+\lambda\beta,\ \ \forall\lambda,\alpha,\beta\in C λ(α+β)=λα+λβ, ∀λ,α,β∈C
这上面的定义都可以通过实数集的性质来证明得出, 比如说:
1.4 Example
证明交换律: α β = β α , ∀ α , β ∈ C \alpha\beta=\beta\alpha,\ \ \forall\alpha,\beta\in C αβ=βα, ∀α,β∈C
- proof. 不妨假设 α , β \alpha,\beta α,β分别等于 a + b i , c + d i ( a , b , c ∈ R ) a+bi,c+di\ \ (a,b,c\in R) a+bi,c+di (a,b,c∈R)
- α β = ( a + b i ) ( c + d i ) = ( a c − b d ) + ( a d + b c ) i \alpha\beta=(a+bi)(c+di)=(ac-bd)+(ad+bc)i αβ=(a+bi)(c+di)=(ac−bd)+(ad+bc)i
- β α = ( c + d i ) ( a + b i ) = ( c a − d b ) + ( c b + d a ) i \beta\alpha=(c+di)(a+bi)=(ca-db)+(cb+da)i βα=(c+di)(a+bi)=(ca−db)+(cb+da)i
- 通过实数集的加法交换律和乘法交换律我们可以很容易得出 α β = β α \alpha\beta=\beta\alpha αβ=βα
同样的, 分配律, 结合律和加法交换律都可以利用实数集的特性证明出来
这里我们再来证明一下加法逆元的唯一性:
证明 ∀ α ∈ C , 有唯一 ∃ β ∈ C , 有 α + β = 0 \forall\alpha\in C, 有唯一\exist \beta\in C, 有\alpha+\beta=0 ∀α∈C,有唯一∃β∈C,有α+β=0
- proof. 不妨假设 α , β , λ \alpha,\beta,\lambda α,β,λ分别等于 a + b i , c + d i , e + f i a+bi,c+di,e+fi a+bi,c+di,e+fi, 且有 α + β = 0 \alpha+\beta=0 α+β=0和 α + λ = 0 \alpha+\lambda=0 α+λ=0
- α + β = ( a + c ) + ( b + d ) i = 0 \alpha+\beta=(a+c)+(b+d)i=0 α+β=(a+c)+(b+d)i=0, 则 a + b = 0 , b + d = 0 a+b=0,b+d=0 a+b=0,b+d=0
- α + λ = ( a + e ) + ( b + f ) i = 0 \alpha+\lambda=(a+e)+(b+f)i=0 α+λ=(a+e)+(b+f)i=0, 则 a + e = 0 , b + f = 0 a+e=0,b+f=0 a+e=0,b+f=0
- 则有 a = − b , b = − d a=-b,b=-d a=−b,b=−d且 a = − e , b = − f a=-e,b=-f a=−e,b=−f,显然 b = e , d = f b=e,d=f b=e,d=f, 则加法逆元唯一
同样的方式我们也可以证明出乘法逆元的唯一性, 这里我就不加以证明了
上面我们提到了加法逆元和乘法逆元, 这里我们来给出逆元的定义和基于这些定义再定义出的减法和除法
1.5 Definition
有 α , β ∈ C \alpha,\beta\in C α,β∈C
- 我们定义 − α -\alpha −α作为 α \alpha α的加法逆元, 则 − α -\alpha −α是唯一的复数使得下面的等式成立:
- α + ( − α ) = 0 \alpha+(-\alpha)=0 α+(−α)=0
- 复数集合 C C C上的减法定义为:被减数加上减数的加法逆元
- β − α = β + ( − α ) \beta-\alpha=\beta+(-\alpha) β−α=β+(−α)
- 对于 α ≠ 0 \alpha\neq 0 α=0, 我们定义 1 / α 1/\alpha 1/α为 α \alpha α的乘法逆元, 则是唯一 1 / α 1/\alpha 1/α的复数使得下面的等式成立:
- α ( 1 / α ) = 1 \alpha(1/\alpha)=1 α(1/α)=1
- 复数集合 C C C上的除法定义为:被除数乘以除数的乘法逆元
- β / α = β ( 1 / α ) \beta/\alpha=\beta(1/\alpha) β/α=β(1/α)
这样, 通过原先对复数集合的加法和乘法的定义加上复数逆元的定义我们实现了对复数集合的减法和除法运算的定义
且我们之前说过, 实数集合实际上就是复数集合的子集, 那么我们可以归纳出如下的定义
1.6 Notation
F F F(fields)定义为 R R R或者 C C C
F F F的元素被称作"标量", 这个词通常被强调是一个数, 与向量这个概念相对
另外对于
α
∈
F
\alpha\in F
α∈F, 且有一个正整数
m
m
m, 我们定义
α
m
\alpha^m
αm为
α
\alpha
α的
m
m
m次求积:
α
m
=
α
⋯
α
⏟
\alpha^m=\underbrace{\alpha\cdots\alpha}
αm=
α⋯α
那么对于
α
.
β
∈
F
\alpha.\beta\in F
α.β∈F, 正整数
m
,
n
m,n
m,n, 显然有
(
α
m
)
n
=
α
m
n
(\alpha^m)^n=\alpha^{mn}
(αm)n=αmn且
(
α
β
)
m
=
α
m
β
m
(\alpha\beta)^m=\alpha^m\beta^m
(αβ)m=αmβm
在定义 R n , C n R^n,C^n Rn,Cn之前, 我们先来看两个重要的例子
1.7 Example
- 集合 R 2 R^2 R2, 你可以将之视为一个平面, 是所有有序实数对的集合:
- R 2 = { ( x , y ) : x , y ∈ R } R^2=\{(x,y):x,y\in R\} R2={(x,y):x,y∈R}
- 集合 R 3 R^3 R3, 你可以将之视为一个普通的空间, 是所有有序实数三元组的集合:
- R 3 = { ( x , y , z ) : x , y , z ∈ R } R^3=\{(x,y,z):x,y,z\in R\} R3={(x,y,z):x,y,z∈R}
上面两个例子是我们在正常高数学习中会遇到的集合, 但是在线性代数中, 我会和更高维数的集合打交道, 为了定义更高维度的集合, 我们需要先提出数组的概念
1.8 Definition
n n n是一个非负整数, A A A作为一个长度为 n n n的数组, 是一个有 n n n个被逗号分隔的元素并且被括号括起来的集合体, 看起来是下面这个样子:
( x 1 , ⋯ , x n ) (x_1,\cdots,x_n) (x1,⋯,xn)
只有当长度和元素以及元素顺序都相同时, 两个数组才相等
从上面的定义, 我们可以发现, 长度为2的数组正好就是有序对, 长度为3的数组正好就是三元组, 许多数学家把长度为 n n n的数组称作n元组, 有时候我们在使用数组的时候不会特地指出数组的长度, 但是要记住的是所有的数组都有有限的长度, 型如 ( x 1 , ⋯ ) (x_1,\cdots) (x1,⋯)可能有无限的长度, 就不属于数组, 而长度为0的数组型如 ( ) () (), 我们允许长度为0的数组, 这样的定义是为了使得我们对数组的一些理论没有个别例外
数组和集合有两方面的不同:在数组中顺序和重复是有意义的, 在集合中, 顺序和重复是无效的
1.9 Example
- 数组(3,5)和数组(5,3)是不相等的, 但是集合{3,5}和集合{5,3}是相等的
- 数组(4,4)和数组(4,4,4)是不相等的, 但是集合{4,4}和集合{4,4,4}都等于{4}
接下来我们将拓展集合 R 2 , R 3 R^2,R^3 R2,R3, 将 R R R替换成 F F F, 且使用任意正整数 n n n作为维数
1.10 Definition
F n F^n Fn是所有长度为n的元素为 F F F数组的集合:
F n = { ( x 1 , ⋯ , x n ) : x j ∈ F f o r j = 1 , ⋯ , n } F^n=\{(x_1,\cdots,x_n):x_j\in F\ \ for\ j=1,\cdots,n\} Fn={(x1,⋯,xn):xj∈F for j=1,⋯,n}
这里的 x j x_j xj我们称之为数组 ( x 1 , ⋯ , x n ) (x_1,\cdots,x_n) (x1,⋯,xn)的第j个坐标
当 F = R , n = 2 / 3 F=R,n=2/3 F=R,n=2/3时, 这个定义和之前的 R 2 , R 3 R^2,R^3 R2,R3是一样的
1.11 Example
C 4 C^4 C4是所有长度为4元素为复数的数组的集合:
C 4 = { ( z 1 , z 2 , z 3 , z 4 ) : z 1 , z 2 , z 3 , z 4 ∈ C } C^4=\{(z_1,z_2,z_3,z_4):z_1,z_2,z_3,z_4\in C\} C4={(z1,z2,z3,z4):z1,z2,z3,z4∈C}
当 n ≥ 4 n\geq 4 n≥4, 我们就很难使用可视化的方式来把 R n R^n Rn看作某个物理对象, 同时我们可以把 C C C看成一个平面, 但是当 n ≥ 2 n\geq2 n≥2时, 人类的大脑很难想象 C 2 C^2 C2的样子, 但是即使 n n n很大, 我们定义的 F n F^n Fn上的代数运算依然成立, 这就是我们研究线性代数的原因
这里我们来定义 F n F^n Fn上的加法运算:
1.12 Definition
F n F^n Fn的加法运算就是数组对应位序元素相加:
( x 1 , ⋯ , x n ) + ( y 1 , ⋯ , y n ) = ( x 1 + y 1 , ⋯ , x n + y n ) (x_1,\cdots,x_n)+(y_1,\cdots,y_n)=(x_1+y_1,\cdots,x_n+y_n) (x1,⋯,xn)+(y1,⋯,yn)=(x1+y1,⋯,xn+yn)
对于 F n F^n Fn的加法, 我们讨论其交换律:
1.13 交换律
x , y ∈ F n , x + y = y + x x,y\in F^n,x+y=y+x x,y∈Fn,x+y=y+x
proof. 不妨假设 x = ( x 1 , ⋯ , x n ) , y = ( y 1 , ⋯ , y n ) x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n) x=(x1,⋯,xn),y=(y1,⋯,yn)
则 x + y = ( x 1 , ⋯ , x n ) + ( y 1 , ⋯ , y n ) x+y=(x_1,\cdots,x_n)+(y_1,\cdots,y_n) x+y=(x1,⋯,xn)+(y1,⋯,yn)
= ( x 1 + y 1 , ⋯ , x n + y n ) =(x_1+y_1,\cdots,x_n+y_n) =(x1+y1,⋯,xn+yn)
= ( y 1 + x 1 , ⋯ , y n + x n ) =(y_1+x_1,\cdots,y_n+x_n) =(y1+x1,⋯,yn+xn)
= ( y 1 , ⋯ , y n ) + ( x 1 , ⋯ , x n ) =(y_1,\cdots,y_n)+(x_1,\cdots,x_n) =(y1,⋯,yn)+(x1,⋯,xn)
= y + x =y+x =y+x
上面的第二和第四个等式由 F n F^n Fn加法的定义得到, 第三个等式由 F F F的加法交换律得到
1.14 Definition
我们使用 0 0 0来代指长度n的坐标全为0的数组:
0 = ( 0 , ⋯ , 0 ) 0=(0,\cdots,0) 0=(0,⋯,0)
这里的0有两个不同的定义, 左边的0代表数组, 右边的0代表一个数, 这在说明清楚的情况下并不会引起混淆
1.15 Example
把0看作 F n F^n Fn的加法单位元, 有:
x + 0 = x , x ∈ F n x+0=x, x\in F^n x+0=x,x∈Fn
上面的0是数0还是数组0?是数组0, 因为我们并没有对 F n F^n Fn元素和数字的求和做出定义
为了便于理解, 我们拿大家最熟悉的 R 2 R^2 R2集合的元素来类比, R 2 R^2 R2集合元素我们一般看作一个点或者是一个箭头, 可以画在一个二维平面坐标系当中如下:
当我们把这个元素当中箭头时, 我们将其称作向量, 当我们将其看作向量时, 我们可以不改变其长度和方向, 对其就行平移变换, 并同时可以把它当作原先相同的向量, 虽然我们使用图片和模糊的点和向量这样的语言来描述 R 2 R^2 R2的元素, 我们依旧需要记住, 这些只是帮助我们理解它而言, 而不是替代我们建立好的数学概念, 虽然我们无法准确画出更高维度的集合的元素, 但是这些元素的定义和 R 2 R^2 R2集合上元素的定义的同样严格的.
比如说 ( 1 , 2 , 3 , 4 , 5 ) (1,2,3,4,5) (1,2,3,4,5)是 R 5 R^5 R5的元素, 我们可以将其看作5维空间中的一个点或者向量, 且不需要关系它的具体物理意义.
之前我们定义了 F n F^n Fn上的加法, 在 R 2 R^2 R2中, 加法具有特殊的几何意义, 比如说我们有两个向量 x , y ∈ R 2 x,y\in R^2 x,y∈R2, 我们将向量y平移直到它的起点是x的终点, x + y x+y x+y就是 x x x的起点到 y y y的终点的向量, 如图所示:
1.16 Definition
x ∈ F n x\in F^n x∈Fn, x x x的加法逆元写作 − x -x −x有:
x + ( − x ) = 0 x+(-x)=0 x+(−x)=0
换句话说, 如果 x = ( x 1 , ⋯ , x n ) x=(x_1,\cdots,x_n) x=(x1,⋯,xn), 有 − x = ( − x 1 , ⋯ , − x n ) -x=(-x_1,\cdots,-x_n) −x=(−x1,⋯,−xn)
上面等式右边的0是数列, 有 0 ∈ F n 0\in F^n 0∈Fn
1.17 Definition
一个数 λ \lambda λ和 F n F^n Fn的一个元素相乘的结果是这个数和每一个坐标元素都相乘:
λ ( x 1 , ⋯ , x n ) = ( λ x 1 , ⋯ , λ x n ) \lambda(x_1,\cdots,x_n)=(\lambda x_1,\cdots,\lambda x_n) λ(x1,⋯,xn)=(λx1,⋯,λxn)
λ ∈ F , ( x 1 ⋯ , x n ) ∈ F n \lambda\in F,(x_1\cdots,x_n)\in F^n λ∈F,(x1⋯,xn)∈Fn
在 R 2 R^2 R2上的标量乘法有几何上的意义, 如果 λ \lambda λ是正数且 x x x是 R 2 R^2 R2集合中的向量, 那么 λ x \lambda x λx和 x x x方向相同, 长度前者是后者的 λ \lambda λ倍, 换句话说 λ x \lambda x λx相比于 x x x是放大还是缩小取决于 λ \lambda λ是大于1还是小于1, 另外如果 λ \lambda λ是复数, 那么 λ x \lambda x λx的方向和 x x x的方向相反, 长度前者是后者的 ∣ λ ∣ |\lambda| ∣λ∣倍
域是一个拥有至少两个不同的元素0和1,以及满足1.3定义的加法乘法操作的集合, 显然
R
,
C
R,C
R,C都是域, 另一个域的例子是有加法和乘法操作的集合{0,1}, 这里的加法操作是:0+0=0, 0+1=1,1+0=1, 1+1=0, 在这本书中我们不需要关系除
R
,
C
R,C
R,C以外的域, 但是在后面的章节中一些定义于F上的理论有些也可以用于任意的域中, 如果你原因的话可以尝试在之后的学习中把
F
F
F替换成任意的域, 当然了, 在一些例子当中如果我们有
1
+
1
+
⋯
+
1
≠
0
1+1+\cdots+1\neq0
1+1+⋯+1=0的话是无法适用的.