python heappush heappop的用法+leetcode347

本文介绍了Python中heapq模块的heappush和heappop函数,用于创建和操作小根堆。heappush自动建立小根堆,要创建大根堆可通过取元素负值实现。heappop则会返回并移除堆中的最小值。在解决LeetCode 347题时,可以利用最大堆寻找最高频的前k个元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.heappush(heap,item)建立大、小根堆

heapq.heappush()是往堆中添加新值,此时自动建立了小根堆
不能直接建立大跟堆,所以每次push时给元素加一个负号(即取相反数),此时最小值变最大值,反之亦然,那么实际上的最大值就可以处于堆顶了,返回时再取负即可。

2.heapq.heappop()从堆中弹出并返回最小的值

普通list(即并没有进行heapify等操作的list),对他进行heappop操作并不会弹出list中最小的值,而是弹出第一个值。
对于小跟堆,会依次弹出最小的值。

所以针对最小 top k 问题用最大堆,求最大 top k 问题用最小堆
比如leetcode347中,求最大top k问题,先求出各个数字出现的频率,再建立一个小跟堆,每次把频率最小的值弹出来,最后剩下一个k大小的list,就是要求的前k个高频元素了。

# 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。
# 统计元素出现的频率,这一类的问题可以使用map来进行统计。
# 然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列
# 优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。
# 而且优先级队列内部元素是自动依照元素的权值排列。heapq这个模块提供了堆队列算法的实现,也称为优先队列算法。
class Solution:
    def topKFrequent(self, nums: List[int], k: int) -> List[int]:
        map_={}
        for i in range(len(nums)):
            map_[nums[i]]=map_.get(nums[i],0)+1
        hashmap=[]
        for key,freq in map_.items():
            heapq.heappush(hashmap,(freq,key))
            if len(hashmap)>k:
                heapq.heappop(hashmap)
        re=[0]*k
        for i in range(k-1,-1,-1):
            re[i]=heapq.heappop(hashmap)[1]
        return re
map_[nums[i]]=map_.get(nums[i],0)+1
#get的赋值语句,目的是新建字典键值对

等价于

map_[nums[i]]=0
map_[nums[i]]+=1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值