pytorch实践之线性模型使用框架

文章构建了一个简单的线性模型,使用不同的优化器(SGD,Adam,ASGD)进行训练,通过MSELoss计算损失。在100个epoch内,展示了每个epoch的损失变化以及权重和偏置的更新。最终,对于输入为4的情况,给出了每个优化器对应的模型预测输出。
摘要由CSDN通过智能技术生成
import torch


class LinearModel(torch.nn.Module):

    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = self.linear(x)
        return y_pred


# prepare dataset
x_data = torch.tensor([[1.0], [2.0], [3.0]])
y_data = torch.tensor([[2.0], [4.0], [6.0]])

model = LinearModel()
# 构造损失计算与优化器
criterion = torch.nn.MSELoss(size_average=False)
optimizer_sgd = torch.optim.SGD(model.parameters(), lr=0.01)
optimizer_adam = torch.optim.Adam(model.parameters(), lr=0.01)
optimizer_asgd = torch.optim.ASGD(model.parameters(), lr=0.01)
opt = []
opt.append(optimizer_sgd)
opt.append(optimizer_adam)
opt.append(optimizer_asgd)
pred_saver = {}
epoch_list = [i for i in range(1000)]
for optimizer in opt:
    loss_each = []
    for epoch in range(100):
        y_pred = model(x_data)
        loss = criterion(y_pred, y_data)
        print(epoch, loss.item())
        loss_each.append(loss.item())
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print("w", model.linear.weight.item(), "bias",model.linear.bias.item())
    # 测试模型在输入数据为4时,输出为何值
    pred_saver[optimizer] = model(torch.tensor([[4.0]])).item()

for k, v in pred_saver.items():
    print(k.__class__, v)




最后的测试情况
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值