- 博客(49)
- 收藏
- 关注
原创 langchain提示词的使用
提示词是指向人工智能大模型提供的输入信息,通常包含关键词、问题或指令,可以引导大模型生成与用户期望相符的回应。本文简单介绍了在langchain开发中使用提示词的方法。
2025-05-13 15:29:53
852
原创 通过langchain访问大模型并实现简单的查询
大模型现在有很多,国内也有很多可用的,并且效果非常好,可以取代传统的搜索引擎功能,并且可以生成文字、图像、视频等等,本文介绍通过langchain来实现对大模型的访问。
2025-04-28 15:59:21
827
原创 自然语言处理入门7——注意力机制
注意力机制是一个非常伟大的机制,说它是现代人工智能的基石也不为过。这次我们来看看注意力机制的原理,并用一个例子来说明。
2025-04-18 15:13:49
748
原创 自然语言处理入门6——RNN生成文本
用RNN生成文本,除了直接生成文本,还有一种更通用的用法,称为序列到序列的模型,也就是sequence to sequence。最典型的seq2seq应用就是机器翻译,输入一串用某种语言表示的文字,输出用另一种文字表示的文字。
2025-04-09 09:55:37
1142
原创 自然语言处理入门5——LSTM
本文介绍了RNN训练过程中可能存在的梯度爆炸和梯度消失问题,并由此引出了LSTM模型,对LSTM模型的实现和训练过程进行了介绍,并在外文语料库上进行了训练,最后提出了几点改进意见
2025-03-26 15:40:56
1074
原创 自然语言处理入门2——神经网络
在自然语言处理中,神经网络可以处理计数方法计算量过大的问题,本文使用神经网络CBOW模型实现了单词的完形填空预测。
2025-02-27 12:29:34
1141
原创 自然语言处理入门1——单词的表示和距离
随着DeepSeek的火爆,AI大模型越来越被大众所接受,我们在日常生活和工作学习中也开始越来越频繁的使用豆包、通义千问、Kimi、DeepSeek、文心一言等大模型工具了。这些大模型底层技术都是Transformer模型,属于自然语言处理范畴。本文介绍了自然语言的表示方式以及相似度计算的方法。
2025-02-18 13:47:03
1021
原创 语义分割——VitSeg
第一个具有重大影响力的使用纯Transformer结构进行图像分类的模型就是VIT。所谓的ViTSeg,其实就是将ViT直接应用在语义分割任务上。
2024-12-19 14:52:03
1404
1
原创 语义分割——DeeplabV3plus
DeeplabV3plus是一个基于深度学习的语义分割模型,它结合了编码器-解码器结构和空洞可分离卷积技术,以实现高精度的图像分割。
2024-12-13 12:15:00
1770
原创 语义分割——全卷积网络FCN
3.第三种,就是把特征图上采样到原图的16分之一,再加上原始图像在卷积过程中得到的原图16分之一的特征图,然后再上采样2倍,回复到原图的8分之一,此时再加上原始图像在卷积过程中得到的原图8分之一的特征图,最后再恢复成原始图像的大小,得到结果,称为FCN-8s;FCN模型比较简单,它的核心原理就是用卷积神经网络提取图像的特征,并在舍弃了图像分类网络中的最后一层分类层,替换成了一个1X1卷积,得到要分类的特征图,之后通过上采样恢复成原始图像的大小,从而实现每个像素点的分类,得到分割的结果。
2024-11-01 14:17:14
825
原创 MIOU的计算
MIOU,即平均交并比(Mean Intersection over Union),是评价语义分割模型性能的一个重要指标,本文介绍了MIOU的计算方法
2024-08-29 16:46:47
2113
原创 VBA读取不带后缀名文本文件的方法(解决Unix文本文件在Windows下变成一行的读取)
Unix/Mac系统下的文件在Windows里打开的话,所有文字会变成一行,本文主要说明了这种文件的读取方法
2024-07-29 15:21:10
653
原创 深度学习中权重初始化的重要性
本文主要讨论了深度学习模型中的权重初始化问题,并比较了高斯分布和Xavier以及kaiming初始化的具体区别。
2024-04-30 16:13:47
1219
1
原创 卷积神经网络五:GoogleNet
在2014年的ImageNet图像识别大赛中,一个名叫GoogleNet的网络架构大放异彩。GoogleNet使用了一种叫作Inception的结构。其实GoogleNet本质上就是一种Inception网络,而一个Inception网络又是由多个Inception模块和少量的汇聚层堆叠而成。
2024-03-19 17:11:38
2351
原创 卷积神经网络四:VGG
本文介绍了VGG的原理以及代码实现,并在cifar-10和猫狗分类数据集上进行了测试,特别提到了批量归一化层对于训练效果的提升。
2024-03-13 16:13:12
3174
原创 卷积神经网络三:AlexNet
本文介绍了AlexNet网络模型的结构,并进行了代码实现,在cifar-10数据集上进行了训练,最后简单介绍了一下模型的预训练和微调。
2024-03-06 10:39:22
1200
原创 神经网络Pytorch实现
不过现在主流的深度学习都是采用框架来进行开发的,最主流的是:Tensorflow,Keras(对Tensorflow做了封装,本质上还是Tensorflow),Mxnet,Pytorch,以及国内百度的PaddlePaddle。下面我们构建了一个训练函数,采用了预训练的VGG16模型,因为VGG是在Imagenet上做的预训练,最后输出是1000类的,而我们这里是两类的,所以需要改造一下最后一层。我们有两种图片,一种是猫的图片,一种是狗的图片,希望训练一个模型,使得它可以对输入的猫狗图片区分。
2024-02-02 15:15:09
1033
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人