VGG网络复现

VGG

上一篇文章关于AlexNet网络的复现中学习了pytorch和tensorflow两种实现方式,刚开始接触两个框架不太合适,决定先用tensorflow这个框架进行学习网络复现

学习流程

  1. 阅读VGG论文原文
  2. 搜集学习资源:视频讲解-博客资源
  3. 熟悉VGG网络结构
  4. 代码复现,清楚网络结构中层与层之间的操作

VGG论文

原论文:very deep convolutional networks for large-scale image recognition
论文翻译:暂时没有找到合适的翻译文章

学习资源

博客资源
视频资源

VGG网络结构

在这里插入图片描述
在这里插入图片描述

代码复现

文件目录

其中read_ckpt.py是迁移学习中读取ckpt权重文件的代码,这里不作阐述,fine_train_vgg16.py是训练深度为16时的VGG网络结构的完整代码
剩下的py文件的解析除了视频的讲解,本人也作了大量中文注释及解释

在这里插入图片描述

model.py
from tensorflow.keras import layers, models, Model, Sequential

#vgg网络结构生成def
def VGG(feature, im_height=224, im_width=224, num_classes=1000):
    # tensorflow中的tensor通道排序是NHWC
    input_image = layers.Input(shape=(im_height, im_width, 3), dtype="float32")
    x = feature(input_image)
    x = layers.Flatten()(x)
    x = layers.Dropout(rate=0.5)(x)#随机失活50%的神经元,减少过拟合
    x = layers.Dense(2048, activation='relu')(x)
    x = layers.Dropout(rate=0.5)(x)#随机失活50%的神经元,减少过拟合
    x = layers.Dense(2048, activation='relu')(x)
    x = layers.Dense(num_classes)(x)#1000个神经元,最后的一层全连接层
    output = layers.Softmax()(x)#类别概率分布层
    model = models.Model(inputs=input_image, outputs=output)
    return model

#生成提取特征网络结构,根据cfg生成对应的网络配置
def features(cfg):
    feature_layers = []
    for v in cfg:
        if v == "M":
            feature_layers.append(layers.MaxPool2D(pool_size=2, strides=2))
        else:
            conv2d = layers.Conv2D(v, kernel_size=3, padding="SAME", activation="relu")
            feature_layers.append(conv2d)
    return Sequential(feature_layers, name="feature")#将feature_layers列表中的layers生成为一个网络结构

#A-D的网络配置参数字典,KEY为A-D配置,Values为各层的定义,数字为卷积核的个数,‘M’为最大池化层,调用在def VGG中调用,注意传入参数cfg = cfgs[model_name],
cfgs = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


def vgg(model_name="vgg16", im_height=224, im_width=224, num_classes=1000):
    assert model_name in cfgs.keys(), "not support model {}".format(model_name)#异常报错断言
    cfg = cfgs[model_name]
    model = VGG(features(cfg), im_height=im_height, im_width=im_width, num_classes=num_classes)
    return model

model = vgg(model_name='vgg11')

train.py

基于CPU训练的py训练文件,主要的注释和解释放在trainGPU.py的文件那,需要看更清楚的解释去看trainGPU

from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
from model import vgg
import tensorflow as tf
import json
import os


def main():

    #训练集及验证集的路径
    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    train_dir = os.path.join(image_path, "train")
    validation_dir = os.path.join(image_path, "val")

    #数据异常断言
    assert os.path.exists(train_dir), "cannot find {}".format(train_dir)
    assert os.path.exists(validation_dir), "cannot find {}".format(validation_dir)

    #创建一个保存网络训练权重的文件
    # create direction for saving weights
    if not os.path.exists("save_weights"):
        os.makedirs("save_weights")


    #初始化输入规格,训练bach大小和epochs
    im_height = 224
    im_width = 224
    batch_size = 32
    epochs = 10

    # data generator with data augmentation
    #数据预处理,将图像归一化,图像水平翻转
    train_image_generator = ImageDataGenerator(rescale=1. / 255,
                                               horizontal_flip=True)
    validation_image_generator = ImageDataGenerator(rescale=1. / 255)

    #读取图像文件,shuffle:是否随机打乱,target_size网络输入的规格,class_mode分类模式
    train_data_gen = train_image_generator.flow_from_directory(directory=train_dir,
                                                               batch_size=batch_size,
                                                               shuffle=True,
                                                               target_size=(im_height, im_width),
                                                               class_mode='categorical')

    #训练集的数据量,即图片数量
    total_train = train_data_gen.n

    # get class dict,这里在执行图像生成器train_image_generator.flow_from_directory时,
    # class_mode载入训练数据的路径时,train_dir中的目录结构就已经分好类了,总共遍历到train文件夹下的5个花分类文件夹,执行完后train_data_gen的成员
    #class_indices初始化为5
    class_indices = train_data_gen.class_indices#数据结构为{'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflowers': 3, 'tulips': 4}

    # transform value and key of dict
    inverse_dict = dict((val, key) for key, val in class_indices.items())#数据结构为{0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'}
    # write dict into json file,dumps函数将字典转换为json格式,indent是json的格式参数
    json_str = json.dumps(inverse_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    val_data_gen = validation_image_generator.flow_from_directory(directory=validation_dir,
                                                                  batch_size=batch_size,
                                                                  shuffle=False,
                                                                  target_size=(im_height, im_width),
                                                                  class_mode='categorical')
    total_val = val_data_gen.n
    print("using {} images for training, {} images for validation.".format(total_train,
                                                                           total_val))

    model = vgg("vgg16", 224, 224, 5)
    model.summary()

    # using keras high level api for training
    model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
                  loss=tf.keras.losses.CategoricalCrossentropy(from_logits=False),#模型已经经过softmax,from_logits就为false
                  metrics=["accuracy"])
    #回调函数,控制模型训练过程中保存的参数,filepath保存模型的位置,save_best_only只保存最佳的模型,save_weights_only只保存权重文件,存储小点
    #monitor监控参数,判断最佳的损失函数定义为val_loss,用验证集的损失来验证模型好坏
    callbacks = [tf.keras.callbacks.ModelCheckpoint(filepath='./save_weights/myVGG.h5',
                                                    save_best_only=True,
                                                    save_weights_only=True,
                                                    monitor='val_loss')]

    # tensorflow2.1 recommend to using fit
    #step_per_epoch:Total number of steps (batches of samples)
    history = model.fit(x=train_data_gen,
                        steps_per_epoch=total_train // batch_size,
                        epochs=epochs,
                        validation_data=val_data_gen,
                        validation_steps=total_val // batch_size,
                        callbacks=callbacks)
    # plot loss and accuracy image
    history_dict = history.history
    train_loss = history_dict["loss"]
    train_accuracy = history_dict["accuracy"]
    val_loss = history_dict["val_loss"]
    val_accuracy = history_dict["val_accuracy"]

    # figure 1
    plt.figure()
    plt.plot(range(epochs), train_loss, label='train_loss')
    plt.plot(range(epochs), val_loss, label='val_loss')
    plt.legend()
    plt.xlabel('epochs')
    plt.ylabel('loss')

    # figure 2
    plt.figure()
    plt.plot(range(epochs), train_accuracy, label='train_accuracy')
    plt.plot(range(epochs), val_accuracy, label='val_accuracy')
    plt.legend()
    plt.xlabel('epochs')
    plt.ylabel('accuracy')
    plt.show()

if __name__ == '__main__':
    main()

trainGPU.py
import matplotlib.pyplot as plt
from model import vgg
import tensorflow as tf
import json
import os
import time
import glob
import random

#设置tf只能使用哪块gpu
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"


def main():

    #设置训练设备参数
    # gpus = tf.config.experimental.list_physical_devices("GPU")
    # if gpus:
    #     try:
    #         for gpu in gpus:
    #             #设置tf对显卡根据模型大小设置显存占用
    #             tf.config.experimental.set_memory_growth(gpu, True)
    #     except RuntimeError as e:
    #         print(e)
    #         exit(-1)

    #训练集及验证集的路径
    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    train_dir = os.path.join(image_path, "train")
    validation_dir = os.path.join(image_path, "val")

    # 数据异常断言
    assert os.path.exists(train_dir), "cannot find {}".format(train_dir)
    assert os.path.exists(validation_dir), "cannot find {}".format(validation_dir)

    # 创建一个保存网络训练权重的文件
    # create direction for saving weights
    if not os.path.exists("save_weights"):
        os.makedirs("save_weights")

    # 初始化输入规格,训练bach大小和epochs
    im_height = 224
    im_width = 224
    batch_size = 32
    epochs = 10

    # class dict
    #这里由于没有用到ImageDataGenerator,不像train.py训练时使用了ImageDataGenerator方法能够通过
    #ImageDataGenerator的flow_from_directory方法根据文件目录得到class_indices,这里需要自己生成
    #data_class包含train文件夹的所有子文件夹,用到listdir方法
    data_class = [cla for cla in os.listdir(train_dir) if os.path.isdir(os.path.join(train_dir, cla))]
    #训练类个数
    class_num = len(data_class)

    # >> > seasons = ['Spring', 'Summer', 'Fall', 'Winter']
    # >> > list(enumerate(seasons))
    # [(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]
    # 这里说明enumerate的作用
    class_dict = dict((value, index) for index, value in enumerate(data_class))
    # 数据结构为{'daisy': 0, 'dandelion': 1, 'roses': 2, 'sunflowers': 3, 'tulips': 4}

    # reverse value and key of dict
    # 数据结构为{0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'}
    inverse_dict = dict((val, key) for key, val in class_dict.items())
    # write dict into json file


    # json_str数据结构
    # '{
    #     "0": "daisy",
    #     "1": "dandelion",
    #     "2": "roses",
    #     "3": "sunflowers",
    #     "4": "tulips"
    # }'
    # dumps函数将字典转换为json格式,indent是json的格式参数
    json_str = json.dumps(inverse_dict, indent=4)

    # 将json_str写入json_file
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    # load train images list
    # glob.glob函数遍历train目录下各个类文件夹下的jpg文件,返回一个跟文件目录同序的列表,列表元素均为每个jpg的路径
    train_image_list = glob.glob(train_dir+"/*/*.jpg")

    #随机打乱
    random.shuffle(train_image_list)

    train_num = len(train_image_list)
    # 异常断言
    assert train_num > 0, "cannot find any .jpg file in {}".format(train_dir)

    # os.path.sep 为 / 分隔符,[-2]是倒数第2个分隔符,即jpg的前两个分隔符的位置,比如/类/jpg,
    # 倒数第2个和的为类,class_path[类]即这个类对应的数字,具体可看debug
    train_label_list = [class_dict[path.split(os.path.sep)[-2]] for path in train_image_list]

    # load validation images list
    val_image_list = glob.glob(validation_dir+"/*/*.jpg")
    random.shuffle(val_image_list)
    val_num = len(val_image_list)
    assert val_num > 0, "cannot find any .jpg file in {}".format(validation_dir)


    val_label_list = [class_dict[path.split(os.path.sep)[-2]] for path in val_image_list]

    # 输出训练集验证集的图片个数
    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))
    # 上面得到训练集验证集的路径,标签在这个方法进行载入处理
    def process_path(img_path, label):
        #标签改为onehot编码,深度depth即编码的最大值,是一个标量,用于定义一个 one hot 维度的深度
        label = tf.one_hot(label, depth=class_num)

        # 处理图片路径
        image = tf.io.read_file(img_path)#读取文件路径
        image = tf.image.decode_jpeg(image)#解析为jpg
        image = tf.image.convert_image_dtype(image, tf.float32)#转换数据类型为float32
        # 调整图片大小,调整图像大小的方法使用默认的方法,比较常见有双线性插值,最邻近,双三次插值,面积插值
        image = tf.image.resize(image, [im_height, im_width])#
        return image, label

    # 根据可用的CPU动态设置并行调用的数量
    AUTOTUNE = tf.data.experimental.AUTOTUNE

    # load train dataset
    # tf.data.Dataset相对ImageDataGenerator的区别是多线程载入数据,相比ImageDataGenerator快很多
    #详细的库说明查看Tensorflow,tf.data库文档说明

    #将元组(train_image_list, train_labe_list)切片,详情如下
    #>>> dataset = tf.data.Dataset.from_tensor_slices(([1, 2], [3, 4], [5, 6]))
    # >>> list(dataset.as_numpy_iterator())
    # [(1, 3, 5), (2, 4, 6)]
    #这里原本的(train_image_list, train_label_list):([p1,p2,...,pn],[l1,l2,...,ln])
    #这里将训练图片路径和训练图片标签一对一组成元组对:[(p1,l1),(p2,l2),...,(pn,ln)]
    train_dataset = tf.data.Dataset.from_tensor_slices((train_image_list, train_label_list))
    #shuffle对前buffer_size个数据进行打乱
    #map(map_func, num_parallel_calls=None, deterministic=None)
    #map_func方法会遍历dataset所有的元素,将每个元素应用map_func转换数据,并且返回一个新的dataset,包含了
    #这些转换后的元素,顺序不变,map_func能够更改dataset的值和结构
    #num_parallel_calls参数是处理数据的方式,具体见官方文档,第三个参数没用到,用到再学
    #repeat方法repeat(count=None),重复原生数据count次,count为None表示无限期重复,
    #这里repeat方法非常重要,是训练或者验证时防止数据不够的措施,所有数据训练完之后,没有数据了,下一个epoch要训练
    #却没有数据了,这里的repeat方法能够不断循环取得原生数据来训练或者验证
    #batch(batch_size, drop_remainder=False)将dataset数据分成每批batch_size的列表
    #drop_remainder表示如果最后一个批次的数量少于batch_size元素,是否应删除该批次;默认行为是不删除较小的批次
    #这里repeat用了之后,drop_remainder无需理会
    #prefetch(buffer_size)创建一个数据集,该数据集从该数据集中预取元素,
    #这里.batch(batch_size).prefetch(AUTOTUNE)表示预先取AUTOTUNE批数据,每批有batch_size个元素供并行处理
    train_dataset = train_dataset.shuffle(buffer_size=train_num)\
                                 .map(process_path, num_parallel_calls=AUTOTUNE)\
                                 .repeat().batch(batch_size).prefetch(AUTOTUNE)

    # load train dataset
    val_dataset = tf.data.Dataset.from_tensor_slices((val_image_list, val_label_list))
    val_dataset = val_dataset.map(process_path, num_parallel_calls=tf.data.experimental.AUTOTUNE)\
                             .repeat().batch(batch_size)

    # 实例化模型
    model = vgg("vgg16", 224, 224, 5)
    model.summary()

    # using keras low level api for training
    # loss_object = tf.keras.losses.CategoricalCrossentropy(from_logits=False)
    # optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)
    #
    # train_loss = tf.keras.metrics.Mean(name='train_loss')
    # train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy')
    #
    # test_loss = tf.keras.metrics.Mean(name='test_loss')
    # test_accuracy = tf.keras.metrics.CategoricalAccuracy(name='test_accuracy')
    #
    # @tf.function
    # def train_step(images, labels):
    #     with tf.GradientTape() as tape:
    #         predictions = model(images, training=True)
    #         loss = loss_object(labels, predictions)
    #     gradients = tape.gradient(loss, model.trainable_variables)
    #     optimizer.apply_gradients(zip(gradients, model.trainable_variables))
    #
    #     train_loss(loss)
    #     train_accuracy(labels, predictions)
    #
    # @tf.function
    # def test_step(images, labels):
    #     predictions = model(images, training=False)
    #     t_loss = loss_object(labels, predictions)
    #
    #     test_loss(t_loss)
    #     test_accuracy(labels, predictions)
    #
    # best_test_loss = float('inf')
    # train_step_num = train_num // batch_size
    # val_step_num = val_num // batch_size
    # for epoch in range(1, epochs+1):
    #     train_loss.reset_states()        # clear history info
    #     train_accuracy.reset_states()    # clear history info
    #     test_loss.reset_states()         # clear history info
    #     test_accuracy.reset_states()     # clear history info
    #
    #     t1 = time.perf_counter()
    #     for index, (images, labels) in enumerate(train_dataset):
    #         train_step(images, labels)
    #         if index+1 == train_step_num:
    #             break
    #     print(time.perf_counter()-t1)
    #
    #     for index, (images, labels) in enumerate(val_dataset):
    #         test_step(images, labels)
    #         if index+1 == val_step_num:
    #             break
    #
    #     template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
    #     print(template.format(epoch,
    #                           train_loss.result(),
    #                           train_accuracy.result() * 100,
    #                           test_loss.result(),
    #                           test_accuracy.result() * 100))
    #     if test_loss.result() < best_test_loss:
    #         model.save_weights("./save_weights/myVGG.ckpt".format(epoch), save_format='tf')

    # using keras high level api for training
    #model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准
    model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0005),
                  loss=tf.keras.losses.CategoricalCrossentropy(from_logits=False),
                  metrics=["accuracy"])
    # 回调函数,控制模型训练过程中保存的参数,filepath保存模型的位置,save_best_only只保存最佳的模型,save_weights_only只保存权重文件,存储小点
    # monitor监控参数,判断最佳的损失函数定义为val_loss,用验证集的损失来验证模型好坏
    callbacks = [tf.keras.callbacks.ModelCheckpoint(filepath='./save_weights/myVGG_{epoch}.h5',
                                                    save_best_only=True,
                                                    save_weights_only=True,
                                                    monitor='val_loss')]

    # tensorflow2.1 recommend to using fit
    #step_per_epoch:Total number of steps (batches of samples)
    #// 表示整数除法,向下取整
    # fit方法执行训练过程
    history = model.fit(x=train_dataset,
                        steps_per_epoch=train_num // batch_size,
                        epochs=epochs,
                        validation_data=val_dataset,
                        validation_steps=val_num // batch_size,
                        callbacks=callbacks)

    # plot loss and accuracy image
    history_dict = history.history
    train_loss = history_dict["loss"]
    train_accuracy = history_dict["accuracy"]
    val_loss = history_dict["val_loss"]
    val_accuracy = history_dict["val_accuracy"]

    # figure 1
    plt.figure()
    plt.plot(range(epochs), train_loss, label='train_loss')
    plt.plot(range(epochs), val_loss, label='val_loss')
    plt.legend()
    plt.xlabel('epochs')
    plt.ylabel('loss')

    # figure 2
    plt.figure()
    plt.plot(range(epochs), train_accuracy, label='train_accuracy')
    plt.plot(range(epochs), val_accuracy, label='val_accuracy')
    plt.legend()
    plt.xlabel('epochs')
    plt.ylabel('accuracy')
    plt.show()
if __name__ == '__main__':
    main()

predict.py
import os
import json

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

from model import vgg


def main():
    im_height = 224
    im_width = 224
    num_classes = 5

    # load image
    img_path = "../tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    # resize image to 224x224
    img = img.resize((im_width, im_height))
    plt.imshow(img)

    # scaling pixel value to (0-1)
    img = np.array(img) / 255.

    # Add the image to a batch where it's the only member.
    img = (np.expand_dims(img, 0))

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model
    model = vgg("vgg16", im_height=im_height, im_width=im_width, num_classes=num_classes)
    weights_path = "./save_weights/myVGG.h5"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(weights_path)
    model.load_weights(weights_path)

    # prediction
    result = np.squeeze(model.predict(img))
    predict_class = np.argmax(result)

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_class)],
                                                 result[predict_class])
    plt.title(print_res)
    print(print_res)
    plt.show()


if __name__ == '__main__':
    main()

预测结果

以batch_size=10去训练得到权重

在这里插入图片描述

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值