高数基础——数列极限

本文介绍了数列极限的概念,从定义出发,探讨了数列没有极限的两种情况,以及数列极限的特有性质。重点讲解了利用单调有界准则和夹逼准则求解数列极限的方法,并提出了在无法直接判断单调性和有界性时,如何通过奇偶子列和压缩映射法来求解极限问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数列极限

前面我们学习了函数的极限定义和极限,今天我们来学习数列的极限
数列相较于函数具有更强的离散性,我们研究数列实际上就是研究每一个n所代表的离散点,所以根据函数极限的定义我们可以类比得到数列极限的定义

1. 数列极限的定义
在这里插入图片描述
这里需要注意的是没有极限,即A不存在的情况,实际上分为两种
在这里插入图片描述

2. 数列极限的特有性质
在这里插入图片描述
同时根据该性质的逆否命题我们可知道:
若数列{an}的其中任意一个子列不收敛,则数列{an}不收敛

3. 夹逼准则
在这里插入图片描述
4. 单调有界准则

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值