【人工智能实验】A*算法求解8数码问题 golang

人工智能经典问题八数码求解

实际上是将求解转为寻找最优节点的问题,算法流程如下:

  1. 求非0元素的逆序数的和,判断是否有解
  2. 将开始状态放到节点集,并设置访问标识位为true
  3. 从节点集中取出h(x)+g(x)最小的节点
  4. 判断取出的节点的状态是不是最终状态,如果是的话则回溯打印
  5. 找出取出的节点的状态中的0的位置
  6. 对取出的节点进行move操作,包含up down left right
  7. 如果move后的状态的访问标识位为false,则添加。否则什么都不做

需要注意:节点的数据结构如下

  • 状态:int数组
  • h(x):当前节点的状态到目标状态的距离
  • g(x):当前节点的状态到初始状态的距离
  • 动作:到当前节点所进行的move类型
  • 父节点:记录上一个状态,方便回溯打印

使用go语言实现如下

  • main.go

    package main
    
    import (
    	"container/heap"
    	"github.com/gookit/color"
    	"log"
    	"os"
    	"os/signal"
    	"syscall"
    )
    
    var (
    	start  = []int{2, 8, 3, 1, 6, 4, 7, 0, 5}
    	target = []int{1, 2, 3, 8, 0, 4, 7, 6, 5}
    )
    var (
    	movables    = []string{"up", "down", "left", "right"}
    	moveOffsets = map[string]int{"up": -3, "down": 3, "left": -1, "right": 1}
    )
    var (
    	visited = make(map[string]bool)
    )
    
    func main() {
    	color.BgCyan.Println("Y02114562")
    	printFun := func(list []int) {
    		for _, i := range list {
    			color.BgLightCyan.Print(i, ",")
    		}
    		color.BgLightCyan.Print("\n")
    	}
    	printFun(start)
    	printFun(target)
    	if reverseSum(start) != reverseSum(target) {
    		log.Fatal("不可解")
    	}
    	path, steps := solve(start)
    	if steps == -1 {
    		log.Fatal("No solution")
    	}
    	color.BgGreen.Println("只需:", steps, "步")
    	color.BgGreen.Println("操作:", path)
    
    	quit := make(chan os.Signal, 1)
    	signal.Notify(quit, syscall.SIGINT, syscall.SIGTERM)
    	<-quit
    }
    
    // 启发函数:h(x) 从当前状态到目标的距离
    func manhattanDistance(state []int) int {
    	distance := 0
    
    	for i := 0; i < 9; i++ {
    		if state[i] != 0 {
    			row1, col1 := i/3, i%3
    			// 遍历所有不为0的点,计算他与他的目标位置的曼哈顿距离
    			for j := 0; j < 9; j++ {
    				if state[i] == target[j] {
    					row2, col2 := j/3, j%3
    					distance += abs(row1-row2) + abs(col1-col2)
    					break
    				}
    			}
    		}
    	}
    	return distance
    }
    
    // 启发式搜索:八数码问题求解
    func solve(start []int) ([]string, int) {
    	// 创建起始节点
    	startNode := &Node{
    		State:     start,
    		Heuristic: manhattanDistance(start),
    		G:         0,
    		PrevMove:  "",
    		PrevNode:  nil,
    	}
    
    	// 创建优先队列
    	pq := make(PriorityQueue, 0)
    	heap.Init(&pq)
    	heap.Push(&pq, startNode)
    
    	visited[listToString(startNode.State)] = true
    
    	// A*搜索
    	for pq.Len() > 0 {
    		currentNode := heap.Pop(&pq).(*Node)
    
    		// 到达目标状态,返回路径
    		if listToString(currentNode.State) == listToString(target) {
    			path := make([]string, 0)
    			for currentNode.PrevNode != nil {
    				path = append(path, currentNode.PrevMove)
    				currentNode = currentNode.PrevNode
    			}
    			return func(slice []string) ([]string, int) {
    				for i, j := 0, len(slice)-1; i < j; i, j = i+1, j-1 {
    					slice[i], slice[j] = slice[j], slice[i]
    				}
    				return slice, len(path)
    			}(path)
    		}
    
    		zeroIndex := func(state []int) int {
    			for i, num := range state {
    				if num == 0 {
    					return i
    				}
    			}
    			return -1
    		}(currentNode.State)
    		for _, move := range movables {
    			if canMove(move, zeroIndex) {
    				newState := make([]int, len(currentNode.State))
    				copy(newState, currentNode.State)
    
    				newZeroIndex := zeroIndex + moveOffsets[move]
    				newState[zeroIndex], newState[newZeroIndex] = newState[newZeroIndex], newState[zeroIndex]
    
    				// 创建新节点
    				newNode := &Node{
    					State:     newState,
    					Heuristic: manhattanDistance(newState),
    					G:         currentNode.G + 1,
    					PrevMove:  move,
    					PrevNode:  currentNode,
    				}
    
    				// 如果新状态未被访问,则加入优先队列和已访问集合
    					if !visited[listToString(newState)] {
    						heap.Push(&pq, newNode)
    						visited[listToString(newState)] = true
    					}
    			}
    		}
    	}
    
    	// 没有找到解
    	return nil, -1
    }
    
  • node.go

    package main
    
    // Node 节点结构体
    type Node struct {
    	State     []int  // 当前状态
    	Heuristic int    // 启发函数值
    	G         int    // 初始节点到当前节点
    	PrevMove  string // 上一步移动的方向
    	PrevNode  *Node  // 上一步的节点
    }
    
    // PriorityQueue 优先队列
    type PriorityQueue []*Node
    
    // Len 优先队列的方法:计算长度
    func (pq PriorityQueue) Len() int {
    	return len(pq)
    }
    
    // Less 优先队列的方法:比较优先级
    func (pq PriorityQueue) Less(i, j int) bool {
    	return pq[i].Heuristic+pq[i].G < pq[j].Heuristic+pq[j].G
    }
    
    // Swap 优先队列的方法:交换元素
    func (pq PriorityQueue) Swap(i, j int) {
    	pq[i], pq[j] = pq[j], pq[i]
    }
    
    // Push 优先队列的方法:向队列中插入元素
    func (pq *PriorityQueue) Push(x interface{}) {
    	node := x.(*Node)
    	*pq = append(*pq, node)
    }
    
    // Pop 优先队列的方法:从队列中弹出元素
    func (pq *PriorityQueue) Pop() interface{} {
    	old := *pq
    	n := len(old)
    	node := old[n-1]
    	*pq = old[0 : n-1]
    	return node
    }
    
  • tool.go

    package main
    
    import "fmt"
    
    // 辅助函数:判断是否可移动
    func canMove(move string, zeroIndex int) bool {
    	if move == "up" && zeroIndex >= 3 {
    		return true
    	}
    	if move == "down" && zeroIndex <= 5 {
    		return true
    	}
    	if move == "left" && zeroIndex%3 != 0 {
    		return true
    	}
    	if move == "right" && zeroIndex%3 != 2 {
    		return true
    	}
    	return false
    }
    
    // 辅助函数:将[]int转换为字符串
    func listToString(state []int) string {
    	str := ""
    	for _, num := range state {
    		str += fmt.Sprintf("%d", num)
    	}
    	return str
    }
    
    // 辅助函数:求除了0之外的逆序和
    func reverseSum(arr []int) bool {
    	sum := 0
    
    	for i := 1; i < len(arr); i++ {
    		if arr[i] != 0 {
    			for j := 0; j < i; j++ {
    				if arr[j] > arr[i] {
    					sum++
    				}
    			}
    		}
    	}
    
    	return sum%2 != 0
    }
    
    // 辅助函数:计算绝对值
    func abs(num int) int {
    	if num < 0 {
    		return -num
    	}
    	return num
    }
    

运行效果

Y02114562

include using namespace std; struct node{ int nodesun[4][4]; int pre; //上一步在队列中的位置 int flag ; //步数标识,表示当前的步数为有效的 int value; //与目标的差距 int x,y; //空格坐标 }queue[1000]; //移动方向数组 int zx[4]={-1,0,1,0}; int zy[4]={0,-1,0,1}; //当前步数 int top; int desti[4][4];//目标状态 int detect(struct node *p)//检查是否找到 {int i,j; for(i=1;i<4;i++) for(j=1;jnodesun[i][j]!=desti[i][j]) return 0; return 1; } //打印 void printlj() {int tempt; int i,j; tempt=top; while(tempt!=0) { for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<queue[tempt].nodesun[i][j]; if(j==3) cout<<" "<<endl; } tempt=queue[tempt].pre; } } //现在状态与目标状态有多少个不同位置 int VALUE(struct node *p) {int count=0; int i,j; for(i=1;i<4;i++) for(j=1;jnodesun[i][j]!=desti[i][j]) count++; return count; } void main() { //初始化 int i,j,m,n,f; int min=10; int temp,find=0,minnumber; top=1; for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<"请输入第"<<i<<"行"<<"第"<<j<<"列的值"<>temp; queue[1].nodesun[i][j]=temp; } cout<<"请输入初始状态的空格的位置(行)"<>temp; queue[1].x=temp; cout<<"请输入初始状态的空格的位置(列)"<>temp; queue[1].y=temp; queue[1].value=VALUE(&queue[1]); queue[1].pre=0; //上一步在队列中的位置 queue[1].flag=0; //目标状态 for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<"请输入目标状态第"<<i<<"行"<<"第"<<j<<"列的值"<>temp; desti[i][j]=temp; } //根据估价函数 while(!find&&top>0) { for(i=1;i<=top;i++) //////////////////////////////////////////// //min为上一图中与目标图有多少个元素不相同,queue[i]为当前图与目标图有多少个元素不相同通过这两个数的比较,就可以得出当前图较之上一图向目标图接近同时把当前的i记录下来进行下一步比较 {if(queue[i].value<min&&queue[i].flag==0) {minnumber=i;// min=queue[i].value; //还有多少不同的位数 } } queue[minnumber].flag=1; //表示此位有效 ////////////////////////////////////// // for(f=0;f=1&&i=1&&j<=3) {top++; ///////////////////////////////////////////// //位置交换 queue[top]=queue[minnumber]; queue[top].nodesun[m][n]=queue[minnumber].nodesun[i][j]; queue[top].nodesun[i][j]=0; /////////////////////////////////////// //空格移动方向 queue[top].x=i; queue[top].y=j; /////////////////////////////////////// queue[top].pre=minnumber; //上一步在队列中的位置 queue[top].value=VALUE(&queue[top]); //有多少位与目标不同 queue[top].flag=0; //标识位初始化 if(detect(&queue[top])) //检查是否为目标 {printlj(); //打印 find=1; //设找到标识位 break; } } } } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有头发的琦玉

打点钱,我会再努力的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值