pytorch alexNet 进行猫狗识别

本文记录了一次使用PyTorch的AlexNet模型进行猫狗识别任务时遇到的问题及解决过程。主要问题在于数据集的组织结构,原始数据集的train和test文件夹下直接包含图片,而torchvision.datasets.ImageFolder需要读取含有子文件夹的结构,每个子文件夹代表一类。解决方案是将train文件夹下的图片按照类别分别放入dog和cat两个子文件夹中。
摘要由CSDN通过智能技术生成

第一次做猫狗识别的任务,遇到点问题记录一下:

主要是数据集的问题:  下载完猫狗数据集后,打开有两个文件夹分别是train和test。这两个文件夹中并没有子文件夹。直接将其导入

train_dataset = torchvision.datasets.ImageFolder(root='/home/qqsdqt/桌面/cat/data/train',transform=transform)

出现了问题是:在文件夹中没有找到文件,真是大写的懵逼,明明是有照片的好不啦。

后来查了查torchvision.datasets.ImageFolder  这个函数发现,这个函数应该读取文件夹,也就是说这个函数中的路径下的应该是文件夹,而不是直接是照片。将这个train下的文件分成dog和cat两个子文件夹。也就是说应该数下面这个样子滴!

百度了一下ImageFolder函数的解释

import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
from torch.autograd import Variable
import matplotlib.pyplot
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值