门限签名(threshold signature区块链中叫多重签名 multisig),即n个用户中有t个签名时,签名有效。
秘密共享是门限签名的一种特殊情况,即多个用户共享一个秘密,并不是把秘密发给每个人,而是把秘密拆分开发给每个人(当然,也不能直接把信息拆开分发,存在语义上的安全问题),我总结的条件为:
(1)用户能够验证自己的秘密份额是正确的
(2)数量足够的用户能够重构秘密
对于条件(1),就是要让秘密份额满足某个等式,等式中包含公开信息和私人信息,对于条件(2),要求秘密份额包含秘密的信息,一种载体是拉格朗日插值,少于t个信息不能重构t-1次多项式,且都是普通运算,适合搬到有限域。
我们假设秘密为
S
S
S,构造一个多项式
F
(
x
)
=
S
+
∑
l
=
1
t
−
1
x
l
F
l
F(x)=S+\sum_{l=1}^{t-1}x^l F_l
F(x)=S+∑l=1t−1xlFl
其中,
F
l
F_l
Fl是有限域中随机选取的元素。
将
F
(
i
)
F(i)
F(i)发送给第
i
i
i个用户,且有
S
=
F
(
0
)
S=F(0)
S=F(0),注意,
F
(
i
)
F(i)
F(i)看上去是一个随机数。
重构时,
F
(
x
)
=
∑
j
∈
Φ
π
x
j
Φ
S
j
F(x)=\sum_{j\in \Phi} \pi_{xj}^{\Phi}S_j
F(x)=∑j∈ΦπxjΦSj
其中,
π
x
j
Φ
=
Π
m
∈
Φ
,
m
≠
j
x
−
m
j
−
m
\pi_{xj}^{\Phi}=\Pi_{m\in \Phi, m\neq j}\frac{x-m}{j-m}
πxjΦ=Πm∈Φ,m̸=jj−mx−m为拉格朗日插值的系数,小于t个已知值时,不能插值得到正确的
S
S
S。
门限签名(1)——秘密共享
最新推荐文章于 2025-03-25 15:17:22 发布