某马 python day12

本文介绍了Python中的函数,特别是递归的使用,强调了递归函数必须有出口。此外,讲解了lambda表达式的应用,包括不同参数类型的处理,并展示了如何简化代码。还探讨了高阶函数的概念,通过实例展示了map、reduce和filter的用法。最后,通过实际例子展示了如何利用lambda和高阶函数对数据进行操作和排序。
摘要由CSDN通过智能技术生成

python学习

python基础学习——函数

  1. 函数——递归:
    递归函数必须满足的点:函数内部自己调用自己,并且必须要有出口。
'''
    函数的强化——递归,适用于函数的快速排序
        函数内部⾃⼰调⽤⾃⼰
        必须有出⼝
'''
def sum_numbers(num):
    if num==1:
        return 1;
    result = num+sum_numbers(num-1);
    return result;
sum=sum_numbers(5);
print(sum);

递归函数的执行的过程:
递归函数的执行的过程
2. lambda表达式:
lambda:如果⼀个函数有⼀个返回值,并且只有⼀句代码,可以使⽤ lambda简化。
lambda表达式语法:lambda 参数列表 : 表达式
注意事项:lambda表达式的参数可有可⽆,函数的参数在lambda表达式中完全适⽤。lambda函数能接收任何数量的参数但只能返回⼀个表达式的值。
用于简化代码量:

#lambda 函数表达式:
def fn1():
    return 100;
print(fn1);    # <function fn1 at 0x00000270BE99E560>
print(fn1())   # 100
# 更改为lambda表达式:
fn2=lambda:100;  
print(fn2);    # <function <lambda> at 0x00000270BE99E950>
print(fn2());  # 100

lambda函数的参数类型的区别:

'''
1.无参数,一个参数,默认参数,可变参数
'''
# 无参数
fn4=lambda:100;
print(fn4());   # 100
# 一个参数
fn5=lambda a:a;
print(fn5("name"));   # name
# 默认参数
fn6=lambda a,b,c=100:a+b+c;
print(fn6(1,2));   # 103
# 可变参数*args,在不知道个数的情况下可以使用,但是返回的是元组的形式
fn7=lambda *args:args;
print(fn7(100,200,300));  # (100, 200, 300)
# 可变参数:
fn8=lambda **kwargs:kwargs;
print(fn8(name="python",age="20"));  # {'name': 'python', 'age': '20'}

lambda函数具体应用:

#lambda函数的应用;
fn9=lambda a,b:a if a>b else b;
print(fn9(1,2));
#使用lambda函数实现类表中数据按照字典的key值进行排序
students = [
 {'name': 'TOM', 'age': 20},
 {'name': 'ROSE', 'age': 19},
 {'name': 'Jack', 'age': 22}]
students.sort(key=lambda a:a['name']);
# [{'name': 'Jack', 'age': 22}, {'name': 'ROSE', 'age': 19}, {'name': 'TOM', 'age': 20}]
print(students);
students.sort(key=lambda a:a['name'],reverse=True);
# [{'name': 'TOM', 'age': 20}, {'name': 'ROSE', 'age': 19}, {'name': 'Jack', 'age': 22}]
print(students);
students.sort(key=lambda b:b['age'])
# [{'name': 'ROSE', 'age': 19}, {'name': 'TOM', 'age': 20}, {'name': 'Jack', 'age': 22}]
print(students);

3.高阶函数:
把函数作为参数传⼊,这样的函数称为⾼阶函数,⾼阶函数是函数式编程的体现。函数式编程就是指这种⾼度抽象的编程范式。

# 使用两种方法实现求两个数绝对值的和
def sum(a,b):
    result=abs(a)+abs(b);
    print(result);
sum(-10,-20);
# 使用高阶函数的情况
def fun(a):
    return abs(a);
def sum1(a,b):
    result=fun(a)+fun(b);
    print(result);
sum1(-10,-62);

内置高阶函数—map():

'''
    内置的高阶函数-map()
    map(func, lst),将传⼊的函数变量func作⽤到lst变量的每个元素中,并将结果组成新的列表(Python2)/
迭代器(Python3)返回
'''
list1=[1,2,3,4,5,6,7,8];
def func(a):
    return a**a;
result=map(func,list1);
print(result);   # <map object at 0x00000197231C7E50>
print(list(result));   # [1, 4, 27, 256, 3125, 46656, 823543, 16777216]

内置高阶函数—reduce():

'''
    reduce()
    reduce(func(x,y),lst),其中func必须有两个参数。每次func计算的结果继续和序列的下⼀个元素做累
积计算,注意:reduce()传⼊的参数func必须接受2个参数
'''
list2=[1,2,3,4,5,6];
def fun2(a,b):
    return a+b;
result=functools.reduce(fun2,list2);
print(result);     # 21

内置高阶函数—filter():

'''
    filter(func, lst)函数⽤于过滤序列, 过滤掉不符合条件的元素, 返回⼀个 filter 对象,。如果要转换为列表,
可以使⽤ list() 来转换。
'''
list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
def func(x):
    return x % 2 == 0
result = filter(func, list1)
print(result);
print(list(result));    # [2, 4, 6, 8, 10]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值