HDOJ2067_小兔的棋盘(卡塔兰数)

小兔的棋盘

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11339    Accepted Submission(s): 5717

Problem Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
 
Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
 
Output
对于每个输入数据输出路径数,具体格式看Sample。
 
Sample Input
  
  
1 3 12 -1
 
Sample Output
  
  
1 1 2 2 3 10 3 12 416024
维基百科对卡塔兰数的解析:
明安图《割圜密率捷法》卷三 “卡塔兰数”书影
卡塔兰数

卡塔兰数组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰18141894)命名。历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡塔兰数”,远远早于卡塔兰[1][2][3]。有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”[4]

卡塔兰数的一般项公式为 C_n = \frac{1}{n+1}{2n \choose n} = \frac{(2n)!}{(n+1)!n!}

前20项为(OEIS中的数列A000108):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190

性质[编辑]

Cn的另一个表达形式为C_n = {2n\choose n} - {2n\choose n+1} \quad\mbox{ for }n\ge 1 所以,Cn是一个自然数;这一点在先前的通项公式中并不显而易见。这个表达形式也是André对前一公式证明的基础。(见下文的第二个证明。)

递推关系

C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\sum_{i=0}^{n}C_i\,C_{n-i}\quad\mbox{for }n\ge 0.

它也满足

C_0 = 1 \quad \mbox{and} \quad C_{n+1}=\frac{2(2n+1)}{n+2}C_n,

这提供了一个更快速的方法来计算卡塔兰数。

卡塔兰数的渐近增长为

C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}

它的含义是当n → ∞时,左式除以右式的商趋向于1。(这可以用n!的斯特灵公式来证明。)

所有的奇卡塔兰数Cn都满足n=2^k-1。所有其他的卡塔兰数都是偶数。

应用

组合数学中有非常多的组合结构可以用卡塔兰数来计数。在Richard P. Stanley的Enumerative Combinatorics: Volume 2一书的习题中包括了66个相异的可由卡塔兰数表达的组合结构。以下用n=3和n=4举若干例:

  • Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的前缀字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:
XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY
  • 将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:
((())) ()(()) ()()() (())() (()())
  • Cn表示有n个节点组成不同构二叉树的方案数。下图中,n等于3,圆形表示节点,月牙形表示什么都没有。
  • Cn表示有2n+1个节点组成不同构满二叉树(full binary tree)的方案数。下图中,n等于3,圆形表示内部节点,月牙形表示外部节点。本质同上。
Catalan number binary tree example.png

证明:

令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数。显然含n个1、n个0的2n位二进制数共有{2n \choose n}个,下面考虑不满足要求的数目。

考虑一个含n个1、n个0的2n位二进制数,扫描到第2m+1位上时有m+1个0和m个1(容易证明一定存在这样的情况),则后面的0-1排列中必有n-m个1和n-m-1个0。将2m+2及其以后的部分0变成1、1变成0,则对应一个n+1个0和n-1个1的二进制数。反之亦然(相似的思路证明两者一一对应)。

从而C_n = {2n \choose n} - {2n \choose n + 1} = \frac{1}{n+1}{2n \choose n}。证毕。

  • Cn表示所有在n × n格点中不越过对角线的单调路径的个数。一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。计算这种路径的个数等价于计算Dyck word的个数:X代表“向右”,Y代表“向上”。下图为n = 4的情况:
Catalan number 4x4 grid example.svg
  • Cn表示通过连结顶点而将n + 2边的凸多边形分成三角形的方法个数。下图中为n = 4的情况:
Catalan-Hexagons-example.svg
  • Cn表示对{1, ..., n}依序进出置换个数。一个置换w是依序进出栈的当S(w) = (1, ..., n),其中Sw)递归定义如下:令w = unv,其中nw的最大元素,uv为更短的数列;再令S(w) = S(u)S(v)n,其中S为所有含一个元素的数列的单位元。
  • Cn表示用n个长方形填充一个高度为n的阶梯状图形的方法个数。下图为n = 4的情况:
Catalan stairsteps 4.svg
  • Cn表示表为2×n的矩阵的标准杨氏矩阵的数量。 也就是说,它是数字 1, 2, ..., 2n 被放置在一个2×n的矩形中并保证每行每列的数字升序排列的方案数。同样的,该式可由勾长公式的一个特殊情形推导得出。
  • Cn表示n个无标号物品的半序的个数。

汉克尔矩阵[编辑]

无论n的取值为多少,n×n汉克尔矩阵:A_{i,j} = C_{i + j - 2}.\ 行列式为1。例如,n = 4 时我们有

\det\begin{bmatrix}1 & 1 & 2 & 5 \\ 1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132\end{bmatrix} = 1

进一步,无论n的取值为多少,如果矩阵被移动成A_{i,j} = C_{i + j - 1}.\ ,它的行列式仍然为1。 例如,n = 4 时我们有

\det\begin{bmatrix}1 & 2 & 5 & 14 \\ 2 & 5 & 14 & 42 \\ 5 & 14 & 42 & 132 \\ 14 & 42 & 132 & 429 \end{bmatrix} = 1

同时,这两种情形合在一起唯一定义了卡塔兰数。

这题就是” Cn表示所有在n × n格点中不越过对角线的单调路径的个数。”


对于HDOJ2067来讲,如果使用公式直接打表,会发现是溢出的情况,这是就需要使用递推的方式了

(1)h(n)=h(0)×h(n-1)+h(1)×h(n-2)+…+h(n-1)×h(0)     (n≥2)

(2)h(n)=((4n-2)/(n+1))×h(n-1)

(3)h(n)=C(2n,n)/(n+1)     (n=1,2,3,…)


下面AC代码:

import java.util.Scanner;

public class Main{
	private static Scanner scanner;
	private static long arr[];

	public static void main(String[] args) {
		scanner = new Scanner(System.in);
		int count = 1;
		while (scanner.hasNext()) {
			int n = scanner.nextInt();
			if(n == -1){
				break;
			}
			
			arr = new long[36];
			arr[0] = 1;
			founction2();// 方法2--递推
//			founction1();//方法1--公式(溢出)
			System.out.println(count+" "+n+" "+arr[n] * 2);
			count++;
		}
	}

	public static void founction2() {
		for (int i = 1; i < arr.length; i++) {
			for (int j = 0; j < i; j++) {
				arr[i] += arr[j] * arr[i - j - 1];
			}
		}
	}
	public static void founction1(){
		for (int i = 1; i < arr.length; i++) {
			arr[i] = (fac(i*2))/(fac(i+1)*fac(i));
		}
	}

	//计算阶乘
	public static long fac(int n) {
		long sum = 1;
		for (int i = 1; i <= n; i++) {
			sum *= i;
		}
		return sum;
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值