Numpy学习笔记

numpy.zeros

创建指定大小的数组,数组元素以 0 来填充:

numpy.zeros(shape, dtype = float, order = ‘C’)

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order ‘C’ 用于 C 的行数组,或者 ‘F’ 用于 FORTRAN 的列数组

实例

import numpy as np

#默认为浮点数
x = np.zeros(5)
print(x)

#设置类型为整数
y = np.zeros((5,), dtype = np.int)
print(y)

#自定义类型
z = np.zeros((2,2), dtype = [(‘x’, ‘i4’), (‘y’, ‘i4’)])
print(z)
输出结果为:

[0. 0. 0. 0. 0.]
[0 0 0 0 0]
[[(0, 0) (0, 0)]
[(0, 0) (0, 0)]]

ndarray.shape

ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。

ndarray.shape 也可以用于调整数组大小。

实例

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
print (a.shape)
输出结果为:

(2, 3)
调整数组大小。

实例

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print (a)
输出结果为:

[[1 2]
[3 4]
[5 6]]

NumPy 也提供了 reshape 函数来调整数组大小。

实例

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print (b)
输出结果为:

[[1, 2]
[3, 4]
[5, 6]]

NumPy 矩阵库(Matrix)

菜鸟教程

NumPy 线性代数

菜鸟教程

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值